130
Views
3
CrossRef citations to date
0
Altmetric
Research Papers

Rotating bending fatigue behaviour of a Ni3Al-based single crystal alloy IC6SX at 760°C

, , &
Pages S163-S169 | Received 27 Oct 2014, Accepted 27 Nov 2014, Published online: 25 May 2015
 

Abstract

The high cycle fatigue behaviour at 760°C of a Ni3Al-based single crystal alloy IC6SX has been studied in the present investigation. The specimens for the fatigue tests were prepared by screw selection crystal method in a directional solidification furnace. The rotating bending fatigue tests of the specimens was carried out at the temperature of 760°C in air, the stress ratio of Rmaxmin) was − 1, and the rotating speed of the fatigue tests was 6500 r min− 1 (108 Hz). The stress–fatigue life cycle (S − N f) curve was obtained based on the fatigue tests, and the fracture surfaces were examined using scanning electron microscopy (SEM). The results showed that the fatigue cracks initiated from the surface defects of the specimens and the cracks propagated along the (111) crystal plane. The fatigue fracture was composed of three different characteristic regions corresponding to the three fatigue stages, including fatigue crack initiation stage, steady-state propagation stage and the fast propagation stage. The research results also showed that the rotating bending fatigue performance of alloy IC6SX is superior to that of the second-generation single crystal nickel-based superalloys containing 3 wt-% Re.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 286.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.