188
Views
8
CrossRef citations to date
0
Altmetric
Original Articles

First principles calculations of electronic structures and optical properties of Al- and Ca-doped β-Si3N4

, , , , , & show all
Pages 201-206 | Received 09 May 2012, Accepted 23 Jun 2012, Published online: 12 Nov 2013
 

Abstract

The crystal structures, formation energies, electronic structures and optical properties of Al- and Ca-doped β-Si3N4 were studied using first principles calculations based on density functional theory within the generalised gradient approximation. Results show that the band gaps Eg of Al- and Ca-doped β-Si3N4 decrease distinctly in comparison to that of β-Si3N4. The band structures of Ca-doped supercell behave like semiconductors. The binding energy Eb and formation energy Ef of β-Si3N4 doped with Al are lower than those of Ca-doped β-Si3N4, indicating that the former has a more stable crystal structure than the latter. The static dielectric constant ϵ(0) increases significantly to ∼35 after Al doping and almost does not change after Ca doping. The strong absorption band located at 5·11–20·81 eV becomes much sharper and shows a red shift after Al and Ca doping. The offset of the Al-doped system is larger than that of the Ca-doped system. The absorption coefficient can be remarkably modulated by Al and Ca doping, indicating the potential applications of Al- and Ca-doped β-Si3N4 in optical system.

Acknowledgement

The work was supported by the National Natural Science Foundation of China (grant no. 90816018).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 286.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.