80
Views
11
CrossRef citations to date
0
Altmetric
Editorial

Cell adhesion and cancer: is there a potential for therapeutic intervention?

, &
Pages 727-731 | Published online: 15 May 2007
 

Abstract

Carcinogenesis involves a disruption in adhesion molecule expression and tissue architecture, and tumour invasion requires adhesion-dependent migration into surrounding tissues. Therefore, a variety of peptide and antibody-based reagents that block integrins, cadherins, immunoglobulin superfamily and selectin adhesion molecules have been developed to treat cancers. Therapeutics directed at adhesion molecules can block interactions between tumour cells, endothelial cells and immune cells to prevent tumour cell invasiveness and metastasis. Blocking the adhesion molecules that facilitate the invasion of tumours by endothelial cells and immune cells can prevent tumour-associated angiogenesis and the recruitment of immune-mediated growth factors which are required for tumour growth and spread. In addition, targeted therapies using anticancer agents attached to antibodies or peptides directed as tumour-specific adhesion molecules are being developed.

Acknowledgements

This research was supported by grants from the Northeastern Ontario Regional Cancer Foundation, Sudbury, Ontario.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,049.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.