240
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Anti-infectives Targeting the isoprenoid pathway of Toxoplasma gondii

&
Pages 253-263 | Published online: 13 Feb 2008
 

Abstract

Background: Isoprenoids are an extensive group of natural products with diverse structures consisting of various numbers of five carbon isopentenyl diphosphate (IPP) units. Objective: We review here what is known about the isoprenoid pathway in T. gondii. Methods: Recent primary literature is reviewed. Results/conclusion: Genomic evidence points toward the presence of a 1-deoxy-D-xylulose 5-phosphate/2-C-methyl-D-erythritol 4-phosphate (DOXP/MEP) pathway, similar to the one found in plants, which will produce isopentenyl diphosphate (IPP). The DOXP/MEP pathway has been validated as a target in the related Apicomplexan parasite Plasmodium. The DOXP/MEP pathway in Toxoplasma has not been characterized. Downstream in the pathway, the enzyme farnesyl diphosphate synthase (FPPS) has a central role in forming important intermediates since farnesyl diphosphate (FPP) is a precursor of critical molecules with fundamental biological function such as dolichols, heme a, cholesterol, farnesylated proteins and others. Strong evidence indicates that this enzyme is a valid target for drugs since bisphosphonates, which are specific FPPS inhibitors, inhibited parasite growth in vitro and in vivo. Our hypothesis is that the isoprenoid pathway constitutes a major novel target for the treatment of toxoplasmosis.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,049.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.