169
Views
17
CrossRef citations to date
0
Altmetric
Review

Cellular proteolytic systems in P450 degradation: evolutionary conservation from Saccharomycescerevisiae to mammalian liver

&
Pages 33-49 | Published online: 01 Feb 2007
 

Abstract

Mammalian hepatic cytochromes P450 (P450s) are endoplasmic reticulum (ER)-anchored haemoproteins with the bulk of their catalytic domains exposed to the cytosol and engaged in the metabolism of numerous xeno- and endobiotics. The native P450s exhibit widely ranging half-lifes and predominantly turn over via either autophagic-lysosomal degradation (ALD) or ubiquitin-dependent 26S proteasomal degradation (UPD). The basis for this heterogeneity and differential proteolytic targeting is unknown. On the other hand, structurally/functionally inactivated P450s are predominantly degraded via UPD in a process known as ER-associated degradation (ERAD). ALD/UPD/ERAD pathways are evolutionarily highly conserved. The availability of Saccharomyces cerevisiae mutants with specific genetic defects/deletions in various ALD/UPD/ERAD-associated proteins and corresponding isogenic wild-type strains has enabled the molecular dissection of the degradation pathways for heterologously expressed mammalian P450s, leading to the identification of specific protein participants. These findings collectively attest to a highly versatile cellular system for the physiological disposal of native, senescent and/or inactivated, structurally damaged mammalian liver P450s.

Acknowledgements

The authors gratefully thank all the members of the Correia laboratory that over the years enthusiastically contributed their talents, time, effort and skills to advancing our understanding of P450 degradation. We are also particularly grateful to R Hampton (UCSD), M Hochstrasser (Yale University) and A Cooper (University of Kansas, Missouri), for their generous gifts of yeast strains. This work would not have been possible without the financial support of NIH grants GM44037 and DK26506.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 727.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.