205
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Towards in silico design of epitope-based vaccines

&
Pages 1047-1060 | Published online: 28 Aug 2009
 

Abstract

Background: Epitope-based vaccines (EVs) make use of immunogenic peptides (epitopes) to trigger an immune response. Due to their manifold advantages, EVs have recently been attracting growing interest. The success of an EV is determined by the choice of epitopes used as a basis. However, the experimental discovery of candidate epitopes is expensive in terms of time and money. Furthermore, for the final choice of epitopes various immunological requirements have to be considered. Methods: Numerous in silico approaches exist that can guide the design of EVs. In particular, computational methods for MHC binding prediction have already become standard tools in immunology. Apart from binding prediction and prediction of antigen processing, methods for epitope design and selection have been suggested. We review these in silico approaches for epitope discovery and selection along with their strengths and weaknesses. Finally, we discuss some of the obvious problems in the design of EVs. Conclusion: State-of-the-art in silico approaches to MHC binding prediction yield high accuracies. However, a more thorough understanding of the underlying biological processes and significant amounts of experimental data will be required for the validation and improvement of in silico approaches to the remaining aspects of EV design.

Notes

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,340.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.