385
Views
97
CrossRef citations to date
0
Altmetric
Original Research

Targeted lung cancer therapy: preparation and optimization of transferrin-decorated nanostructured lipid carriers as novel nanomedicine for co-delivery of anticancer drugs and DNA

, , , , , , & show all
Pages 1223-1233 | Published online: 11 Feb 2015

Figures & data

Figure 1 Schematic diagram of Tf-PTX-DNA-NLC.

Notes: Tf-PTX-DNA-NLC was prepared, firstly, by the formation of PTX-DNA-NLC, and then, Tf-PEG-PE was prepared and was placed onto the surface of PTX-DNA-NLC to obtain Tf-PTX-DNA-NLC.

Abbreviations: Tf-PTX-DNA-NLC, transferrin-decorated paclitaxel and deoxyribonucleic acid co-encapsulated nanostructured lipid carriers; PTX-DNA-NLC, paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf-PEG-PE, transferrin-conjugated polyethylene glycol-phosphatidylethanolamine.

Figure 1 Schematic diagram of Tf-PTX-DNA-NLC.Notes: Tf-PTX-DNA-NLC was prepared, firstly, by the formation of PTX-DNA-NLC, and then, Tf-PEG-PE was prepared and was placed onto the surface of PTX-DNA-NLC to obtain Tf-PTX-DNA-NLC.Abbreviations: Tf-PTX-DNA-NLC, transferrin-decorated paclitaxel and deoxyribonucleic acid co-encapsulated nanostructured lipid carriers; PTX-DNA-NLC, paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf-PEG-PE, transferrin-conjugated polyethylene glycol-phosphatidylethanolamine.

Figure 2 TEM imaging of different NLC formulations.

Notes: PTX-DNA-NLC (A) had a spherical shape. Tf5k-PTX-DNA-NLC (B) and Tf10k-PTX-DNA-NLC (C) had slight, light coats on white, spherical-shaped particles.

Abbreviations: NLC, nanostructured lipid carriers; TEM, transmission electron microscopy; PTX-DNA-NLC, paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Figure 2 TEM imaging of different NLC formulations.Notes: PTX-DNA-NLC (A) had a spherical shape. Tf5k-PTX-DNA-NLC (B) and Tf10k-PTX-DNA-NLC (C) had slight, light coats on white, spherical-shaped particles.Abbreviations: NLC, nanostructured lipid carriers; TEM, transmission electron microscopy; PTX-DNA-NLC, paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Figure 3 The particle size and zeta potential of different NLC formulations.

Notes: The particle size (nm) and zeta potential (mV) of (A) blank NLC, (B) PTX-DNA-NLC, (C) Tf5k-PTX-DNA-NLC, and (D) Tf10k-PTX-DNA-NLC.

Abbreviations: NLC, nanostructured lipid carriers; Tf-PTX-DNA-NLC, transferrin-decorated paclitaxel and deoxyribonucleic acid co-encapsulated nanostructured lipid carriers; PTX-DNA-NLC, paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf-PEG-PE, transferrin-conjugated polyethylene glycol-phosphatidylethanolamine; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Figure 3 The particle size and zeta potential of different NLC formulations.Notes: The particle size (nm) and zeta potential (mV) of (A) blank NLC, (B) PTX-DNA-NLC, (C) Tf5k-PTX-DNA-NLC, and (D) Tf10k-PTX-DNA-NLC.Abbreviations: NLC, nanostructured lipid carriers; Tf-PTX-DNA-NLC, transferrin-decorated paclitaxel and deoxyribonucleic acid co-encapsulated nanostructured lipid carriers; PTX-DNA-NLC, paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf-PEG-PE, transferrin-conjugated polyethylene glycol-phosphatidylethanolamine; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Table 1 Characterization of different vectors

Figure 4 In vitro drug release profile of different NLC formulations.

Notes: The in vitro drug release profile of (A) Tf10k-PTX-DNA-NLC, (B) Tf5k-PTX-DNA-NLC, (C) PTX-DNA-NLC, and (D) Taxol®.

Abbreviations: h, hours; NLC, nanostructured lipid carriers; PTX-DNA-NLC, paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidyle thanol-am ine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deox yribonucleic acid-loaded nanostructured lipid carriers.

Figure 4 In vitro drug release profile of different NLC formulations.Notes: The in vitro drug release profile of (A) Tf10k-PTX-DNA-NLC, (B) Tf5k-PTX-DNA-NLC, (C) PTX-DNA-NLC, and (D) Taxol®.Abbreviations: h, hours; NLC, nanostructured lipid carriers; PTX-DNA-NLC, paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidyle thanol-am ine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deox yribonucleic acid-loaded nanostructured lipid carriers.

Figure 5 In vitro cytotoxicity of different NLC formulations.

Notes: Cell viability tests of Taxol®, PTX-DNA-NLC, Tf5k-PTX-DNA-NLC, and Tf10k-PTX-DNA-NLC were performed at the PTX concentrations of 5, 10, 20, 50, and 100 μM. Blank NLC, blank Tf5k-NLC, and blank Tf10k-NLC were also analyzed as contrast. Tf5k-PTX-DNA-NLC had the highest cytotoxic effect compared with other formulations (P<0.05).

Abbreviations: PTX, paclitaxel; NLC, nanostructured lipid carriers; PTX-DNA-NLC, paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Figure 5 In vitro cytotoxicity of different NLC formulations.Notes: Cell viability tests of Taxol®, PTX-DNA-NLC, Tf5k-PTX-DNA-NLC, and Tf10k-PTX-DNA-NLC were performed at the PTX concentrations of 5, 10, 20, 50, and 100 μM. Blank NLC, blank Tf5k-NLC, and blank Tf10k-NLC were also analyzed as contrast. Tf5k-PTX-DNA-NLC had the highest cytotoxic effect compared with other formulations (P<0.05).Abbreviations: PTX, paclitaxel; NLC, nanostructured lipid carriers; PTX-DNA-NLC, paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Figure 6 Effects of different NLC formulations on tumor growth in vivo.

Notes: Tumor growth was suppressed to some extent after administration of Taxol®. Tf5k-PTX-DNA-NLC exhibited significantly better tumor regression than Tf10k-PTX-DNA-NLC and PTX-DNA-NLC (P<0.05).

Abbreviations: NLC, nanostructured lipid carriers; PTX-DNA-NLC, paclitaxel-and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Figure 6 Effects of different NLC formulations on tumor growth in vivo.Notes: Tumor growth was suppressed to some extent after administration of Taxol®. Tf5k-PTX-DNA-NLC exhibited significantly better tumor regression than Tf10k-PTX-DNA-NLC and PTX-DNA-NLC (P<0.05).Abbreviations: NLC, nanostructured lipid carriers; PTX-DNA-NLC, paclitaxel-and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Figure 7 Flow cytometry analysis of in vitro gene transfection.

Notes: Significantly higher transfection efficiency was observed in Tf5k-PTX-DNA-NLC and Lipo-DNA than other formulations at both 36 hours and 72 hours after transfection (P<0.05). At 36 hours, the transfection efficiency of Tf5k-PTX-DNA-NLC was lower than Lipo-DNA complexes (P<0.05), while higher transfection efficiency was obtained at 72 hours when compared with Lipo-DNA (P<0.05). Tf10k-PTX-DNA-NLC did not exhibit good in vitro gene transfection ability at either 36 or 72 hours.

Abbreviations: h, hours; NLC, nanostructured lipid carriers; DNA, deoxyribonucleic acid; Lipo-DNA, Lipofectamine®-DNA complexes; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Figure 7 Flow cytometry analysis of in vitro gene transfection.Notes: Significantly higher transfection efficiency was observed in Tf5k-PTX-DNA-NLC and Lipo-DNA than other formulations at both 36 hours and 72 hours after transfection (P<0.05). At 36 hours, the transfection efficiency of Tf5k-PTX-DNA-NLC was lower than Lipo-DNA complexes (P<0.05), while higher transfection efficiency was obtained at 72 hours when compared with Lipo-DNA (P<0.05). Tf10k-PTX-DNA-NLC did not exhibit good in vitro gene transfection ability at either 36 or 72 hours.Abbreviations: h, hours; NLC, nanostructured lipid carriers; DNA, deoxyribonucleic acid; Lipo-DNA, Lipofectamine®-DNA complexes; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Figure 8 Flow cytometry analysis of in vivo gene transfection.

Notes: Significantly higher transfection efficiency was observed in Tf5k-PTX-DNA-NLC and Lipo-DNA than other formulations at both 36 hours and 72 hours after transfection (P<0.05). At 36 hours, the transfection efficiency of Tf5k-PTX-DNA-NLC was similar to that of Lipo-DNA complexes, while higher transfection efficiency was obtained at 72 hours when compared with Lipo-DNA (P<0.05). Tf10k-PTX-DNA-NLC did not exhibit good in vivo gene transfection ability at either 36 or 72 hours; the data were indicative of poorer efficiency than data obtained from non-decorated PTX-DNA-NLC.

Abbreviations: h, hours; DNA, deoxyribonucleic acid; NLC, nanostructured lipid carriers; Lipo-DNA, Lipofectamine®-DNA complexes; PTX-DNA-NLC, paclitaxel-and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.

Figure 8 Flow cytometry analysis of in vivo gene transfection.Notes: Significantly higher transfection efficiency was observed in Tf5k-PTX-DNA-NLC and Lipo-DNA than other formulations at both 36 hours and 72 hours after transfection (P<0.05). At 36 hours, the transfection efficiency of Tf5k-PTX-DNA-NLC was similar to that of Lipo-DNA complexes, while higher transfection efficiency was obtained at 72 hours when compared with Lipo-DNA (P<0.05). Tf10k-PTX-DNA-NLC did not exhibit good in vivo gene transfection ability at either 36 or 72 hours; the data were indicative of poorer efficiency than data obtained from non-decorated PTX-DNA-NLC.Abbreviations: h, hours; DNA, deoxyribonucleic acid; NLC, nanostructured lipid carriers; Lipo-DNA, Lipofectamine®-DNA complexes; PTX-DNA-NLC, paclitaxel-and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf5k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 5000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers; Tf10k-PTX-DNA-NLC, transferrin-conjugated polyethylene glycol 10000-phosphatidylethanolamine-decorated paclitaxel- and deoxyribonucleic acid-loaded nanostructured lipid carriers.