130
Views
1
CrossRef citations to date
0
Altmetric
Review

Targeting PD-1/PD-L1 in lung cancer: current perspectives

, , , , , , , & show all
Pages 55-70 | Published online: 31 Jul 2015

Figures & data

Figure 1 Major immunological processes involved in cancer.

Notes: (A) Tumor cells produce immunosuppressive factors such as IL-10 and TGF-β that inhibit T-cell activity. Tumor cells secrete PDGF and IL-8 that activate fibroblasts (cancer-associated fibroblasts [CAFs]) that cause suppression of T-cell activity. Tumors have a peritumoral and intratumoral immune cell infiltrate consisting of macrophages, T-cells, B-cells, natural killer (NK) cells, neutrophils, dendritic cells, and eosinophils. These immunologic cells are enrolled due to the cytokine secretion by local inflammatory, stromal, and cancer cells. (B) Immunologic responses are induced by tumor-activated specific T lymphocytes CD8+ when the antigens are presented by antigen presenter cells into peptides complexed with MHC class I (MHC-I), and the positive regulator CD28 on T-cells binds to CD80 (B-7 or B7-1) and CD86 (B7-2) on dendritic cells. Expression of CTLA-4 is induced by TCR signaling allowing interaction with CD86 and CD80 to counteract CD28. The programmed cell death-1 (PD-1) receptor is another inhibitory T-cell receptor that is engaged by its ligands PD-L1 (also known as B7-H1 or CD274) and PD-L2 (also known as B7-DC or CD273). PD-1 is present in T activated cells, tumor-infiltrating T-cells, B-cells, monocytes, and NK T-cells. PD-L1 can be expressed in the tumor constitutively or as an acquired resistance mechanism. PD-1 activation inhibits CD8+ cytotoxic T lymphocyte proliferation, survival, and effector function. It can also induce apoptosis of tumor-infiltrating T-cells and promote differentiation of CD4+ T-cells into forkhead box P3-expressing (FOXP3+) regulatory T-cells. The PD-1 receptor is an inhibitory receptor engaged by its ligands PD-L1 (also known as B7-H1 or CD274) and PD-L2 (also known as B7-DC or CD273).
Figure 1 Major immunological processes involved in cancer.

Table 1 Results of clinical trials with anti-PD-1 and anti-PD-L1 antibodies

Table 2 Ongoing clinical trials with anti-PD-1 and anti-PD-L1 drugs

Table 3 Correlation of PD-L1 expression by IHC analysis and anti-tumoral activity