156
Views
15
CrossRef citations to date
0
Altmetric
Articles

Exposure to chronic and high dissolved copper concentrations impedes meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida (Ochrophyta)

, , , &
Pages 12-20 | Received 14 Aug 2015, Accepted 25 Oct 2015, Published online: 28 May 2019
 

Abstract:

Copper in low natural concentrations is essential for cell metabolism but in excess it becomes extremely toxic to aquatic life, including to the early life stages of marine macroalgae. This work determined the effects of copper exposure on meiospore development of two kelp species, the native Macrocystis pyrifera and invasive Undaria pinnatifida. After settlement, meiospores were exposed to nominal copper concentrations of control (no added copper), 100, 200, 300 and 400 μg L−1 Cu for 9 days. Inductively coupled plasma mass spectrometry of total dissolved copper (CuT) concentrations in the blanks showed that nominal copper concentrations were reduced to 54, 91, 131 and 171 μg L−1 CuT, respectively, indicating that > 50% of the dissolved copper was adsorbed onto the culture vessel walls. In the media with meiospores, the dissolved copper concentrations decreased to 39, 86, 97 and 148 μg L−1 CuT in M. pyrifera and to 39, 65, 97 and 146 μg L−1 CuT in U. pinnatifida, indicating that 6–15% of the dissolved copper was adsorbed by the cells. For both species, meiospores germinated in all copper treatments, with germination decreasing with increasing copper concentration. However, gametophyte growth and sexual differentiation were arrested under all copper treatments. The effective copper concentration causing 50% of arrested germination (Cu-EC50) was 157 and 231 μg L−1 CuT for M. pyrifera and U. pinnatifida, respectively. The higher Cu-EC50 for U. pinnatifida suggests ecological success for the invasive species in copper-polluted environments; however, the subsequent inhibition of gametogenesis under all copper treatments indicated no difference in copper tolerance between both kelp early life stages. We compare our results with the literature available on the effects of copper on the development of early life stages of brown seaweed (Laminariales and Fucales) and discuss the importance of reporting actual experimental dissolved copper concentrations and the necessity of standardizing the response variables measured in macroalgal copper ecotoxicology.

ACKNOWLEDGEMENTS

We thank BECASCHILE-CONICYT, the Royal Society of New Zealand Mardsen grant (UOO0914) and the New Zealand MBIE programme C01X1005 for funding. We thank Pamela Fernández and Rocio Suárez for the assistance during field sampling. We thank the two anonymous reviewers for their thoughtful and constructive comments.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 283.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.