220
Views
0
CrossRef citations to date
0
Altmetric
Review

Epidemiology and Virulence Insights from MRSA and MSSA Genome Analysis

, , , , &
Pages 513-532 | Published online: 17 May 2011
 

Abstract

Staphylococcus aureus is a major human pathogen responsible for a wide diversity of infections ranging from localized to life threatening diseases. From 1961 and the emergence of methicillin-resistant S. aureus (MRSA), this bacterium has shown a particular capacity to survive and adapt to drastic environmental changes and since the beginning of the 1990s it has spread worldwide. Until recently, S. aureus was considered as the prototype of a nosocomial pathogen but it has now been recognized as an agent responsible for outbreaks in the community. Several recent reports suggest that the epidemiology of MRSA is changing. Understanding of pathogenicity, virulence and emergence of epidemic clones within MRSA populations is not clearly defined, despite several attempts to identify common molecular features between strains that share similar epidemiological and/or virulence behavior. These studies included: pattern profiling of bacterial adhesins, analysis of clonal complex groups, molecular genotyping and enterotoxin content analysis. To date, all approaches failed to find a correlation between molecular determinants and clinical outcomes. We hypothesize that the capacity of the bacterium to become more invasive or virulent is determined by genetics. The utilization of massively parallel methods of analysis is therefore ideal to study the contribution of genetics. Therefore, this article focuses on the entire genome including coding sequences as well as noncoding sequences. This high resolution approach allows the monitoring micro- and macroevolution of MRSA and identification of specific genomic markers of evolution of invasive or highly virulent phenotypes.

Financial & competing interests disclosure

This work was supported by grants from the Swiss National Science Foundation nos. 632-057950.99 and PP00B–103002/1 (J Schrenzel), 404940-106296/1 (P François). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

No writing assistance was utilized in the production of this manuscript.

Additional information

Funding

This work was supported by grants from the Swiss National Science Foundation nos. 632-057950.99 and PP00B–103002/1 (J Schrenzel), 404940-106296/1 (P François). The authors have no other relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript apart from those disclosed.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 99.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 255.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.