233
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Edaravone Protects Cortical Neurons From Apoptosis by Inhibiting the Translocation of BAX and Increasing the Interaction Between 14-3-3 and p-BAD

, , , , , , & show all
Pages 665-674 | Received 05 Jan 2012, Published online: 21 Aug 2012
 

Abstract

Edaravone, a free radical scavenger, has shown neuroprotection properties in both animals and humans. To evaluate the mechanisms involved, we obtained a culture of almost pure neurons. The neurons, either untreated or prophylactically treated with edaravone, were exposed to 300 μM hydrogen peroxide. We examined alterations in mitochondria, the percent of apoptotic cells and the immunoblots of key regulatory proteins, and the protein–protein interactions and the cellular locations of cytochrome c. The levels of p-JNK (Thr183/Tyr185) and cytochrome c in cytosol and BAX in heavy membrane (HM), respectively, were increased at 0.5 h and reached the peak at 12 h after stimulation with hydrogen peroxide. The levels of p-BAD and BAX in the cytosol and the interaction between BAD and 14-3-3 were decreased in the untreated neurons. However, edaravone could prevent these changes. In addition, mitochondrial morphology was better preserved and the percentage of apoptosis was lower under the treatment with edaravone. In summary, the present study indicates that edaravone could protect neurons by inhibiting: (1) the activity of JNK, (2) the disassociation of BAD from 14-3-3, and (3) the translocation of BAX from cytosol to mitochondria.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,997.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.