114
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Frequency and size of micronuclei induced in gill cells of medaka fish (Oryzias latipes) after whole-body exposure to clastogenic chemicals

, , , &
Pages 67-72 | Received 19 Aug 2013, Accepted 19 Mar 2014, Published online: 09 Apr 2014
 

Abstract

Medaka fish (Oryzias latipes) were whole-bodily treated with various doses of mitomycin C (MMC), ethylmethanesulfonate (EMS), cyclophosphamide (CP), diethylnitrosamine (DEN), or colchicine (COL) for 24 h, and the frequency of micronucleated cells (MNCs) was measured in the gills at 24 and 48 h after treatment. In the present experiments, MMC, CP, and DEN were recorded as efficient inducers of micronuclei at both sampling times, and none of the MNC frequencies recorded with these agents at 24 h significantly exceeded the corresponding frequency at 48 h. For EMS and COL, positive responses were recorded only 48 h after treatment. By comparison with the time-course data reported for radiation-induced MNCs in the same MN assay system, the clear responses observed at the 48-h time point for all the chemicals used were regarded as evidence of their delayed effects on micronucleus (MN) formation. The mean sizes of micronuclei induced after exposure to COL was significantly larger by a factor 2 as compared with that induced by X-irradiation, whereas those determined for the other four chemicals were almost equal to that induced by X-irradiation. These results demonstrate that the medaka gill-cell MN assay can detect chemically-induced chromosome damage, either directly or after metabolic activation, and spindle malfunction, and provide a basis for further development of the present assay system for testing cytogenetic activities of chemical agents.

Acknowledgements

We thank Dr. P. van Buul, Leiden University, for reading early draft of this report. This work was partly supported by a grant from the Tsuchikawa Memorial Fund for Study in Mammalian Mutagenicity and Inter-university Cooperation Program utilizing Kinki University Reactor.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of this article.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,271.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.