97
Views
5
CrossRef citations to date
0
Altmetric
Research Article

New platform for controlled and sustained delivery of the EGF receptor tyrosine kinase inhibitor AG1478 using poly(lactic-co-glycolic acid) microspheres

, , &
Pages 263-271 | Received 03 Feb 2009, Accepted 19 Jun 2009, Published online: 08 Jan 2010
 

Abstract

Inhibition of the epidermal growth factor receptor (EGFR) reduces tumour growth and metastases and promotes axon regeneration in the central nervous system. Current EGFR inhibition strategies include the administration of reversible small-molecule tyrosine kinase inhibitors (TKIs). However, to be effective in vivo sustained delivery is required. This study explored the feasibility of encapsulating the tyrphostin 4-(3-chloroanilino)-6,7-dimethoxyquinazoline (AG1478) in poly(lactic-co-glycolic acid) (PLGA) microspheres using three different emulsion methods: solid-in-oil-in-water, oil-in-water and oil-in-water with co-solvent. Addition of a co-solvent increased loading and release of AG1478 and significantly (p < 0.001) decreased microsphere size. Co-solvent addition also prolonged AG1478 release from 6 months to over 9 months. Once released AG1478 remained bioactive and inhibited EGFR in immortalized rat fibroblasts and EGFR-amplified human carcinoma cells. These results demonstrate that AG1478 can be encapsulated in PLGA with sustained release and retain bioactivity; thereby providing a new platform for controlled administration of EGFR TKIs.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.