112
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Submicron-size biodegradable polymer-based didanosine particles for treating HIV at early stage: an in vitro study

, , , , , & show all
Pages 666-676 | Received 03 Nov 2011, Accepted 19 Mar 2012, Published online: 30 Apr 2012
 

Abstract

Human immunodeficiency viruses (HIV) hide themselves in macrophages at the early stage of infection. Delivering drug in a sustained manner from polymeric nanoparticles in those cells could control the disease effectively. The study was intended to develop poly(d,l-lactic-co-glycolic acid)-based nanoparticles containing didanosine and to observe their uptake by macrophages in vitro. Various physicochemical evaluations related to nanoparticles, such as drug–excipient interaction, surface morphology, particle size, zeta potential, polydispersity index, drug loading, in vitro drug release and nanoparticle-uptake by macrophages in vitro were determined. Homogenising speeds and drug–polymer ratio varied drug loading and polydispersity index of nanoparticles, providing sustained drug release. Dimethyl sulphoxide/polyethylene glycol improved drug loading predominantly. Nanoparticle-uptake by macrophages was concentration dependent. Experimental nanoparticles successfully transported didanosine to macrophages in vitro, suggesting reduction of dose, thus minimising toxicity and side effects. Developed nanoparticle may control HIV infection effectively at an early stage.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 721.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.