340
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Preparation and characterization of magnetic alginate-chitosan hydrogel beads loaded matrine

, , &
Pages 872-882 | Received 11 Jul 2011, Accepted 04 Oct 2011, Published online: 18 Nov 2011
 

Abstract

The aim of this study was to use alginate-chitosan (Alg-CS) hydrogel beads for developing an oral water-soluble drug delivery system, occupying pH-sensitive property and superparamagnetic. Matrine as a model drug was loaded in Alg-CS hydrogel beads to study the release character of the delivery system. The amount of matrine released from the beads was relatively low in pH 2.5 over 8 h (34.90%), but nearly all of the initial drug content was released in simulated intestinal fluid (SIF, pH 6.8) within 8 h. The results demonstrated that Alg-CS hydrogel beads possess unique pH-dependent swelling behaviors. In addition, the magnetic beads were characterized by Fourier transform infrared spectroscopy, scanning electron microscope, X-ray diffractometry and vibrating-sample magnetometry. Magnetometer measurements data suggested that Alg-CS beads also had superparamagnetic property as well as fast magnetic response. It can be expected that the beads can deliver and release encapsulated anticancer agent at the tumor by the weak magnetic field, and hence could be potential candidates as an orally administered drug delivery system.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.