180
Views
2
CrossRef citations to date
0
Altmetric
Research Article

In vitro evaluation of the effects of various additives and polymers on nerve growth factor microspheres

, , &
Pages 452-457 | Received 05 Nov 2012, Accepted 08 Jan 2013, Published online: 08 Apr 2013
 

Abstract

Objective: To evaluate the effects of various additives or polymers on the in vitro characteristics of nerve growth factor (NGF) microspheres.

Materials and methods: NGF microspheres were fabricated using polyethylene glycol (PEG), ovalbumin (OVA), bovine serum albumin (BSA) or glucose as protein protectors, and poly(lactide-co-glycolide) (PLGA) or poly(lactic acid) (PLA)/PLGA blends as encapsulation materials.

Results: Encapsulation efficiencies of the NGF microspheres with various additives or polymers were not more than 30%. A comparative study revealed that OVA was somewhat superior over others, and was thus chosen as the protective additive in subsequent experiments. Polymer analysis showed that NGF release from 1:1 PLA (η = 0.8):PLGA (75/25, η = 0.45) microspheres lasted for 90 d with a burst release rate of 12.7%. About 40% of the original bioactivity was retained on the 28th day, while 10% was left on the 90th day.

Discussion and conclusion: The combination of OVA as an additive and the PLA/PLGA blend as the coating matrix is suitable for encapsulation of NGF in microspheres for extended release.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,085.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.