147
Views
12
CrossRef citations to date
0
Altmetric
EFFECT OF MAGNETIC FIELDS ON EGF RECEPTOR CLUSTERING

Superposition of an incoherent magnetic field inhibited EGF receptor clustering and phosphorylation induced by a 1.8 GHz pulse-modulated radiofrequency radiation

, , , &
Pages 378-383 | Received 04 Sep 2012, Accepted 27 Nov 2012, Published online: 28 Dec 2012
 

Abstract

Purpose: The present study was conducted to investigate the effect of a temporally incoherent (‘noise’) magnetic field (MF) on radiofrequency radiation (RFR)-induced epidermal growth factor (EGF) receptor clustering and phosporylation in cultured cells.

Materials and methods: Human amniotic epithelial (FL) cells were exposed for 15 min to either a 1.8 GHz RFR (modulated at 217 Hz), a 2 μT incoherent MF, or concurrently to the RFR and incoherent MF. Epidermal growth factor treatment severed as the positive control. Epidermal growth factor receptor clustering on cellular membrane surface was analyzed using confocal microscopy after indirect immunofluorescence staining, and phosphorylation of EGF receptors was measured by western blot technology.

Results: Exposure of FL cells to the 1.8 GHz RFR at SAR (specific absorption rate) of 0.5, 1.0, 2.0, or 4.0 W/kg for 15 min induced EGF receptor clustering and enhanced phosphorylation on tyrosine-1173 residue, whereas exposure to RFR at SAR of 0.1 W/kg for 15 min did not significantly cause these effects. Exposure to a 2 μT incoherent MF for 15 min did not significantly affect clustering and phosphorylation of EGF receptor in FL cells. When superimposed, the incoherent MF completely inhibited EGF receptor clustering and phosphorylation induced by RFR at SAR of 0.5, 1.0, and 2.0 W/kg, but did not inhibit the effects induced at SAR of 4.0 W/kg.

Conclusion: Based on the data of the experiment, it is suggested that membrane receptors could be one of the main targets by which RFR interacts with cells. An incoherent MF could block the interaction to a certain extent.

Acknowledgements

We thank Dr Miguel Penafiel of the Catholic University of America for providing us with the incoherent (‘noise’) magnetic field signal.

Declaration of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

This work was supported by grants from the National Natural Science Foundation of China (No. 30970671) and the Major State Basic Research Development Program of China (973 Program) (No. 2011CB503700).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 1,004.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.