116
Views
13
CrossRef citations to date
0
Altmetric
Research Article

Solvent-free lipase-catalysed synthesis of saccharide-fatty acid esters: closed-loop bioreactor system with in situ formation of metastable suspensions

&
Pages 209-216 | Received 09 Aug 2011, Accepted 25 Jan 2012, Published online: 01 Mar 2012
 

Abstract

Saccharide-fatty acid esters – biodegradable, biocompatible and non-ionic bio-based surfactants derived from inexpensive renewable agricultural sources, utilized in foods, cosmetics and pharmaceuticals, have been synthesized under solvent-free conditions using a closed-loop system operated under continuous recirculation consisting of a reservoir, a peristaltic pump and a packed-bed bioreactor containing immobilized Rhizomucor miehei lipase (RML). Metastable suspensions of saccharide crystals were formed through continuous stirring in the reservoir with an in-line filter of 180 µm normal size preventing larger crystals from clogging the tubing. The initial reaction medium consisted of oleic acid/fructose-oleic acid esters 95/5 w/w, with saccharide added periodically to the reservoir to replace consumed acyl acceptor substrate. The liquid-phase water concentration was retained at a previously determined optimal value of ∼0.4 wt % through free evaporation of the co-product, water, in the reservoir during the initial phase of the reaction, and N2(g) bubbling and vacuum pressure after 40 h of reaction. After 200 h, the reaction mixture contained 84 wt % ester, of which 90% of the ester consisted of monoester. Equivalently, the productivity was 0.195 mmolEster h− 1 gRML− 1. The resultant technical grade product can potentially be used directly, without further purification. A mathematical model based on mass balances and a zeroth-order kinetic model was successfully developed to predict the concentration of substrates (oleic acid and saccharide) in the reservoir during the time course of reaction.

Acknowledgments

Financial support was kindly supplied by the US Department of Agriculture, Grant 2006 - 35504-17262.

Declaration of interest: The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 791.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.