165
Views
17
CrossRef citations to date
0
Altmetric
Research Article

Statistical optimization of controlled release microspheres containing cetirizine hydrochloride as a model for water soluble drugs

, , , , , , & show all
Pages 738-746 | Received 14 Jan 2014, Accepted 16 Apr 2014, Published online: 26 May 2014
 

Abstract

The purpose was to improve the encapsulation efficiency of cetirizine hydrochloride (CTZ) microspheres as a model for water soluble drugs and control its release by applying response surface methodology. A 33 Box–Behnken design was used to determine the effect of drug/polymer ratio (X1), surfactant concentration (X2) and stirring speed (X3), on the mean particle size (Y1), percentage encapsulation efficiency (Y2) and cumulative percent drug released for 12 h (Y3). Emulsion solvent evaporation (ESE) technique was applied utilizing Eudragit RS100 as coating polymer and span 80 as surfactant. All formulations were evaluated for micromeritic properties and morphologically characterized by scanning electron microscopy (SEM). The relative bioavailability of the optimized microspheres was compared with CTZ marketed product after oral administration on healthy human volunteers using a double blind, randomized, cross-over design. The results revealed that the mean particle sizes of the microspheres ranged from 62 to 348 µm and the efficiency of entrapment ranged from 36.3% to 70.1%. The optimized CTZ microspheres exhibited a slow and controlled release over 12 h. The pharmacokinetic data of optimized CTZ microspheres showed prolonged tmax, decreased Cmax and AUC0–∞ value of 3309 ± 211 ng h/ml indicating improved relative bioavailability by 169.4% compared with marketed tablets.

Declaration of interest

The authors declare that all the information provided in this article is correct and there are no conflicts of interest.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 523.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.