195
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Halophilic and thermotolerant Gymnoascus species from several special environments, China

, , &
Pages 179-191 | Received 02 Apr 2015, Accepted 18 Sep 2015, Published online: 20 Jan 2017
 

Abstract

This study introduces three new Gymnoascus species (Gymnoascaceae, Onygenales), G. halophilus, G. stercorarius and G. thermotolerans, isolated from sediments in Chaka Salt Lake, compost and cornfield soil, respectively, in China, based on a polyphasic characterization including morphology, physiology and molecular phylogeny. Phylogenetic relationships were assessed based on the nuclear internal transcribed spacer (ITS = ITS1 + 5.8S + ITS2) region and a combined multilocus alignment of the ITS, 18S subunit rRNA gene and 28S subunit rRNA genes. Our study identified phylogenetic and phenotypic characters that differentiated the three new species from known species in the genus. Salinity and temperature tolerance tests revealed that G. halophilus was an obligate halophile while G. stercorarius and G. thermotolerans were halotolerant and thermotolerant. A key to accepted species of Gymnoascus is provided.

Acknowledgments

This work was financially supported by NSFC ( 31322001) and Fundamental Research on Science and Technology, MOST (2014FY120100).

We are grateful for the help of Dr Roger G. Shivas, who provided valuable suggestions for this work during his academic visit to China (financed by NSFC 31110103906).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 122.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.