58
Views
2
CrossRef citations to date
0
Altmetric
Original Article

Identification of differential expressed transcripts of almond (Prunus dulcis ‘Sefied’) in response to water-deficit stress by cDNA-AFLP

, , , , &
Pages 403-410 | Received 15 Jun 2014, Accepted 23 Apr 2015, Published online: 17 Jun 2015
 

Abstract

Drought is the major abiotic stress with adverse effects on growth and productivity of plants. It induces the expression of various genes that are involved in stress response and tolerant/sensitive phenotypes. In this study, the expression of several genes were analyzed in response to dehydration in almond (Prunus dulcis ‘Sefied’) to shed light on the underlying genetic basis of water-deficit tolerance in almond. The advantages of using almond as a model system for studying dehydration tolerance in woody species are its small diploid genome and its adaptation to drought. Differential expression technique, cDNA-AFLP (amplified fragment length polymorphism), was used to find transcripts accumulated in young trees subjected to water-deficit treatment. Twenty transcript-derived fragments (TDFs) with differential expression between control and stress conditions were generated, amplified, and sequenced. The TDFs showing high homology with genes having known functions were validated by quantitative real-time PCR and their possible function(s) were discussed. These genes include: 2-deoxyglucose-6-phosphate phosphatase, protein kinase MK5 (AFC2) and urease, which up-regulated by 1.61, 2.39 and 4.87 fold under the water-deficit stress condition, respectively. In addition, network analysis unraveled a drought response mechanism displaying activation of the ABA signaling pathway via phosphorylation by 2-deoxyglucose-6-phosphate phosphatase and protein kinase MK5. Protein kinase MK5 was found to be a central element in the drought response network, displaying numerous interactions with RNA-splicing proteins, the sugar-mediated signaling pathway and an epigenetics response (histone phosphorylation).

Acknowledgments

We are grateful to Shahrekord University for financial assistance. We also thank Dr. Rudabe Ravash for her help in qRT-PCR analysis. We greatly appreciate the thorough comments and suggestions of Dr. Karim Sorkheh and Prof. Dr. Rudy Dolferos (Plant Industry, CSIRO, Australia) for improving the manuscript.

Notes

Electronic supplementary material The online version of this article (doi:10.1007/s10310-015-0494-1) contains supplementary material, which is available to authorized users.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 159.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.