978
Views
6
CrossRef citations to date
0
Altmetric
Articles

F index of graphs based on four new operations related to the strong product

, , &

Abstract

For a molecular graph, the first Zagreb index of a graph is equal to the sum of squares of the vertex degrees of the graph and the forgotten topological index (F-index) of a graph is defined as the sum of cubes of the vertex degrees of the graph. These parameters have applications in chemistry and drug structures. In this paper, we study the F index of strong product of two connected graphs in which one of the graphs is obtained by using four new sums called F sums of graphs and the other is any connected graph.

1 Introduction

Throughout this paper we consider only simple connected graphs, that is, connected graphs without loops and multiple edges. For a graph G=(V,E) with vertex set V=V(G) and edge set E=E(G), the degree of a vertex v in G is the number of edges incident to v and is denoted by dG(v).

A graphical invariant is a number related to a graph which is structurally invariant. In chemical graph theory, these invariant numbers are also known as the topological indices. The first and second Zagreb indices of a graph are among the most studied vertex degree based topological indices. These indices were introduced by Gutman and Trinajestić [Citation1], to study the structure dependency of the total π-electron energy on molecular structure, and this was elaborated on in [Citation2]. Another vertex degree based topological index was defined in [Citation1] where the Zagreb indices were introduced, and this index was not further studied until it was studied by Furtula and Gutman in the article [Citation3]. A few basic properties of the forgotten topological index and the significant enhancement of physico-chemical applicability of the first Zagreb index are shown in [Citation3].

Also forgotten topological index of several widely chemical structures which often appear in drug molecular graphs were presented in [Citation4]. The lower and upper bounds of forgotten topological index in terms of graph irregularity, Zagreb indices, graph size and maximum/minimum vertex degrees were given in [Citation5].

For a (molecular) graph G, the first Zagreb index M1(G) and the second Zagreb index M2(G) are, respectively, defined as follows: M1=M1(G)=vV(G)dG2(v),M2=M2(G)=uvE(G)dG(u)dG(v).Also, M1(G)=uvE(G)[dG(u)+dG(v)]. For more details on these indices see the recent papers [Citation6–13] and the references therein. The zeroth-order general Randić index is a more general case of the first Zagreb index [14,15] and see survey paper on Randić index [Citation16].

In [Citation17], exact expressions for the first and second Zagreb indices of graph operations containing the Cartesian product, composition, join, disjunction, and symmetric difference of graphs were presented. Also, exact expressions for the first and second Zagreb indices of graphs based on operations related to the Cartesian product and the lexicographic product were given in [Citation18] and [Citation19], respectively. The closed formulas for the F-index of four operations of graphs to Cartesian product were determined in [Citation20].

In this work, we will study the F index of four new operations related to the strong product on graphs. For this purpose, we recall some operations on graphs in the following (see also [17–21]).

The strong product of two connected graphs G1 and G2, which is denoted by G1G2, is a graph such that the set of vertices is V(G1)×V(G2) and two vertices u=(u1,v1) and v=(u2,v2) are adjacent in G1G2 if and only if, either (i) u1=u2 and v1 is adjacent with v2, or (ii) u1 is adjacent with u2 and v1=v2, or (iii) u1 is adjacent with u2 and v1 is adjacent with v2.

It is easy to see that dG1G2(u1,v1)=dG1(u1)+dG2(v1)+dG1(u1)dG2(v1).

For a connected graph G, there are four related graphs as follows:

(a) S(G) is the graph obtained by inserting an additional vertex in each edge of G. Equivalently, each edge of G is replaced by a path of length 2.

(b) R(G) is obtained from G by adding a new vertex corresponding to each edge of G, then joining each new vertex to the end vertices of the corresponding edge.

(c) Q(G) is obtained from G by inserting a new vertex into each edge of G, then joining with edges those pairs of new vertices on adjacent edges of G.

(d) T(G) has as its vertices the edges and vertices of G. Adjacency in T(G) is defined as adjacency or incidence for the corresponding elements of G.

The graphs S(G) and T(G) are called the subdivision and total graph of G, respectively. For more details on these operations we refer the reader to [Citation22]. The graphs R(G) and Q(G) are called the triangle parallel graph and the line superposition graph of G in [Citation23], respectively.

Note that (i) R(G) can be obtained by replacing each edge of G by a triangle, its vertex set is the union of V(G) and E(G), and its edge set is the union of the respective edge sets of G and S(G); (ii) Q(G) is a graph on the same vertex set as S(G) whose edge set is the union of the edge sets of S(G) and the line graph L(G) of G.

Yarahmadi et al. [Citation23] presented explicit formulas expressing the eccentric connectivity indices of S(G),R(G),Q(G),T(G) in terms of the eccentric connectivity index of the original graph G and some auxiliary invariants.

If G is P3, then S(P3),R(P3),Q(P3) and T(P3) are shown in (see [18,19]).

Fig. 1 P3,S(P3),R(P3),Q(P3)andT(P3).

Fig. 1 P3,S(P3),R(P3),Q(P3)andT(P3).

Based on the Cartesian product G1×G2 of two connected graphs G1 and G2 and the four types S,R,Q,T of graphs resulting from edge subdivision above, M. Eliasi and B. Taeri [Citation21] introduced four new operations on these graphs.

The expression for the Wiener index W(G1+FG2) of the F-sums of graph G1+FG2 in terms of W(F(G1)) and W(G2) and the first and second Zagreb indices for the F-sums of graph were obtained in [Citation21] and [Citation18], respectively.

Also based on the strong product G1G2 of two connected graphs G1 and G2 and the four types S,R,Q,T of graphs resulting from edge subdivision, we also introduce four new operations on these graphs in the following:

Let FS,R,Q,T. The F-sum of G1 and G2, denoted by G1FG2, is defined by F(G1)G2E, where E={(u,v1)(u,v2)E(F(G1)G2):uV(F(G1))V(G1),v1v2E(G2)}, i.e., G1FG2 is a graph with the set of vertices V(G1FG2)=V(F(G1))×V(G2)=(V(G1)E(G1))×V(G2) and two vertices u=(u1,v1) and v=(u2,v2) of G1FG2 are adjacent if and only if, either (i) u1=u2V(G1) and v1v2E(G2), or (ii) u1u2E(F(G1)) and v1=v2V(G2), or (iii) u1u2E(F(G1)) and v1v2E(G1).

For any vertex (x,y)V(G1FG2), the degree of (x,y) in the F-strong product G1FG2 is d(x,y)=dF(G1)(x)+dG2(y)+dF(G1)(x)dG2(y), if xV(G1);dF(G1)(x)+dF(G1)(x)dG2(y), if xV(F(G1))V(G1). P3SP2, P3RP2, P3QP2 and P3TP2 are shown in .

Fig. 2 Graphs G and H and GFH.

Fig. 2 Graphs G and H and G∘FH.

In this work, we will study the F index for the F-strong product of graphs.

2 The F index for F-strong product of graphs

Firstly, we will give the expression for the F index of G1SG2 in terms of F index and Zagreb indices of graphs G1 and G2.

Theorem 1

Let Gi be a connected graph with ni vertices and ei edges, i=1,2. Then F(G1SG2)=[n2+3M1(G2)+6e2]F(G1)+[n1+3M1(G1)+14e1]F(G2)+6e2M1(G1)+30e1M1(G2)+6M1(G1)M1(G2)+F(G1)F(G2)+48e1e2+8n2e1.

Proof

For any vertex (x,y)V(G1SG2), the degree d(x,y) of (x,y) is d(x,y)=dS(G1)(x)+dG2(y)+dS(G1)(x)dG2(y), if xV(G1);dS(G1)(x)+dS(G1)(x)dG2(y), if xV(S(G1))V(G1)=dG1(x)+dG2(y)+dG1(x)dG2(y), if xV(G1);2+2dG2(y), if xV(S(G1))V(G1).

For v1v2E(G2) and u1u2E(S(G1)), if u1V(G1) and u2V(S(G1))V(G1), i.e., u2 is a new vertex inserted on an edge incident to u1, then (u1,v1)(u2,v2)E(G1SG2) and (u1,v2)(u2,v1)E(G1SG2). F(G1SG2)=(u1,v1)(u2,v2)E(G1sG2)[d(u1,v1)2+d(u2,v2)2]=u1=u2V(G1)v1v2E(G2)[d(u1,v1)2+d(u2,v2)2]+v1=v2V(G2)u1u2E(S(G1))[d(u1,v1)2+d(u2,v2)2]+v1v2E(G2)u1u2E(S(G1))[d(u1,v1)2+d(u2,v2)2]=1+2+3.Then 1=u1=u2V(G1)v1v2E(G2)[d(u1,v1)2+d(u2,v2)2]=uV(G1)v1v2E(G2)[(d(u)+d(v1)+d(u)d(v1))2+(d(u)+d(v2)+d(u)d(v2))2]=uV(G1)v1v2E(G2)[2d2(u)+d2(v1)+d2(v2)+d2(u)(d2(v1)+d2(v2))+2d(u)(d(v1)+d(v2))+2d2(u)(d(v1)+d(v2))+2d(u)(d2(v1)+d2(v2))]=uV(G1)[e2(2d2(u))+F(G2)+d2(u)F(G2)+2d(u)M1(G2)+2d2(u)M1(G2)+2d(u)F(G2)]=2e2M1(G1)+n1F(G2)+M1(G1)F(G2)+2(2e1)M1(G2)+2M1(G1)M1(G2)+2(2e1)F(G2)=2e2M1(G1)+n1F(G2)+M1(G1)F(G2)+4e1M1(G2)+2M1(G1)M1(G2)+4e1F(G2).and 2=v1=v2V(G2)u1u2E(S(G1))[d(u1,v1)2+d(u2,v2)2](Without loss of generality, we assume that u1V(G1),u2V(S(G1))V(G1).)=vV(G2)u1u2E(S(G1))[(d(u1)+d(v)+d(u1)d(v))2+(d(u2)+d(u2)d(v))2]=vV(G2)u1u2E(S(G1))[d2(u1)+d2(u2)+d2(v)(d2(u1)+d2(u2))+2d(v)(d2(u1)+d2(u2))+2d(u1)d(v)+2d(u1)d2(v)+d2(v)]=vV(G2)[F(S(G1))+d2(v)F(S(G1))+2d(v)F(S(G1))+2d(v)M1(G1)+2d2(v)M1(G1)+2e1d2(v)]=n2F(S(G1))+M1(G2)F(S(G1))+4e2F(S(G1))+4e2M1(G1)+2M1(G1)M1(G2)+2e1M1(G2).

Note that F(S(G1))=F(G1)+8e1, we have 2=[n2+M1(G2)+4e2]F(G1)+2M1(G1)M1(G2)+10e1M1(G2)+4e2M1(G1)+8e1(n2+4e2). 3=v1v2E(G2)u1u2E(S(G1))[d(u1,v1)2+d(u2,v2)2]=v1v2E(G2)u1u2E(S(G1))u1V(G1),u2V(S(G1))V(G1)[(d(u1)+d(v1)+d(u1)d(v1))2+(d(u2)+d(u2)d(v2))2]=v1v2E(G2)u1u2E(S(G1))u1V(G1),u2V(S(G1))V(G1)[d2(u1)+d2(u2)+d2(v1)+d2(u1)d2(v1)+2d(u1)d(v1)+2d2(u1)d(v1)+2d(u1)d2(v1)+d2(u2)d2(v2)+2d2(u2)d(v2)]=v1v2E(G2)u1u2E(S(G1))u1V(G1),u2V(S(G1))V(G1)[[d2(u1)+d2(u2)]+[d2(v1)]+[d2(u1)d2(v1)]+[2d(u1)d(v1)]+[2d2(u1)d(v1)]+[2d(u1)d2(v1)]+[d2(u2)d2(v2)]+[2d2(u2)d(v2)]]=2e2F(G1)+16e1e2+2e1F(G2)+F(G1)F(G2)+2M1(G1)M1(G2)+2F(G1)M1(G2)+2M1(G1)F(G2)+8e1F(G2)+16e1M1(G2).Hence, F(G1SG2)=[n2+3M1(G2)+6e2]F(G1)+[n1+3M1(G1)+14e1]F(G2)+6e2M1(G1)+30e1M1(G2)+6M1(G1)M1(G2)+F(G1)F(G2)+48e1e2+8n2e1.

Theorem 2

Let Gi be a connected graph with ni vertices and ei edges, i=1,2. Then F(G1RG2)=8[n2+6e2]F(G1)+[n1+20e1]F(G2)+8F(G1)F(G2)+48e1e2+24e2M1(G1)+36e1M1(G2)+24M1(G1)M1(G2)+24F(G1)M1(G2)+12F(G2)M1(G1)+8n2e1.

Proof

F(G1RG2)=(u1,v1)(u2,v2)E(G1RG2)[d(u1,v1)2+d(u2,v2)2]=u1=u2V(G1)v1v2E(G2)[d(u1,v1)2+d(u2,v2)2]+v1=v2V(G2)u1u2E(R(G1))[d(u1,v1)2+d(u2,v2)2]+v1v2E(G2)u1u2E(R(G1))[d(u1,v1)2+d(u2,v2)2]=1+2+3.Then 1=u1=u2V(G1)v1v2E(G2)[d(u1,v1)2+d(u2,v2)2]=8e2M1(G1)+n1F(G2)+4M1(G1)F(G2)+8e1M1(G2)+8M1(G1)M1(G2)+8e1F(G2)since d(u) in R(G1) is 2d(u) in G1, i.e., dR(G1)(u)=2dG1(u). 2=v1=v2V(G2)u1u2E(R(G1))[d(u1,v1)2+d(u2,v2)2]=v1=v2V(G2)u1u2E(R(G1))u1,u2V(G1)[d(u1,v1)2+d(u2,v2)2]+v1=v2V(G2)u1u2E(R(G1))u1V(G1),u2V(R(G1))V(G1)[d(u1,v1)2+d(u2,v2)2]=2+2 2=v1=v2V(G2)u1u2E(R(G1))u1,u2V(G1)[d(u1,v1)2+d(u2,v2)2]=vV(G2)u1u2E(G1)u1,u2V(G1)[(d(u1)+d(v)+d(u1)d(v))2+(d(u2)+d(v)+d(u2)d(v))2]=vV(G2)u1u2E(G1)u1,u2V(G1)[4(d2(u1)+d2(u2))+2d2(v)+4d2(v)(d2(u1)+d2(u2))+4d(v)(d(u1)+d(u2))+4d2(v)(d(u1)+d(u2))+8d(v1)(d2(u1)+d2(u2))]=4n2F(G1)+2e1M1(G2)+4M1(G2)F(G1)+8e2M1(G1)+4M1(G1)M1(G2)+16e2F(G1), 2=v1=v2V(G2)u1u2E(R(G1))u1V(G1),u2V(RG1)V(G1)[d(u1,v1)2+d(u2,v2)2]=vV(G2)u1u2E(G1)u1V(G1),u2V(RG1)V(G1)[(d(u1)+d(v)+d(u1)d(v))2+(d(u2)+d(u2)d(v))2] =vV(G2)u1u2E(G1)u1V(G1),u2V(RG1)V(G1)[4d2(u1)+d2(v)+4d2(u1)d2(v)+4d(u1)d(v)+4d(u1)d2(v)+8d2(u1)d(v)+d2(u2)+d2(u2)d2(v)+2d2(u2)d(v)]=4n2F(G1)+2e1M1(G2)+4M1(G2)F(G1)+8e2M1(G1)+4M1(G1)M1(G2)+16e2F(G1)+8n2e1+8e1M1(G2)+32e1e2, 2=8(n2+4e2)F(G1)+16e2M1(G1)+12e1M1(G2)+8M1(G2)F(G1)+8M1(G1)M1(G2)+8n2e1+32e1e2. 3=v1v2E(G2)u1u2E(R(G1))[d(u1,v1)2+d(u2,v2)2]=v1v2E(G2)u1u2E(S(G1))u1,u2V(G1)[d(u1,v1)2+d(u2,v2)2]+v1v2E(G2)u1u2E(S(G1))u1V(G1),u2V(R(G1))V(G1)[d(u1,v1)2+d(u2,v2)2]=3+3. 3=v1v2E(G2)u1u2E(R(G1))u1,u2V(G1)[d(u1,v1)2+d(u2,v2)2]=v1v2E(G2)u1u2E(R(G1))u1,u2V(G1)[(d(u1)+d(v1)+d(u1)d(v1))2+(d(u2)+d(v2)+d(u2)d(v2))2]=v1v2E(G2)u1u2E(R(G1))u1,u2V(G1)[d2(u1)+d2(u2)+d2(v1)+d2(v2)+d2(u1)d2(v1)+d2(u2)d2(v2)+2d(u1)d(v1)+2d(u2)d(v2)+2d(u1)d2(v1)+2d(u2)d2(v2)+2d2(u1)d(v1)+2d2(u2)d(v2)]=v1v2E(G2)u1u2E(R(G1))u1,u2V(G1)[4[d2(u1)+d2(u2)]+[d2(v1)+d2(v2)]+4[d2(u1)d2(v1)+d2(u2)d2(v2)]+4[d(u1)d(v1)+d(u2)d(v2)]+4[d(u1)d2(v1)+d(u2)d2(v2)]+8[d2(u1)d(v1)+2d2(u2)d(v2)]]=8e2F(G1)+2e1F(G2)+4F(G1)F(G2)+4M1(G1)M1(G2)+4M1(G1)F(G2)+8F(G1)M1(G2), 3=v1v2E(G2)u1u2E(R(G1))u1V(G1),u2V(R(G1))V(G1)[d(u1,v1)2+d(u2,v2)2]=v1v2E(G2)u1u2E(R(G1))u1V(G1),u2V(R(G1))V(G1)[(d(u1)+d(v1)+d(u1)d(v1))2(d(u2)+d(u2)d(v2))2] =v1v2E(G2)u1u2E(R(G1))u1V(G1),u2V(R(G1))V(G1)[d2(u1)+d2(u2)+d2(v1)+d2(u1)d2(v1)+2d(u1)d(v1)+2d2(u1)d(v1)+2d(u1)d2(v1)+d2(u2)d2(v2)+2d2(u2)d(v2)]=v1v2E(G2)u1u2E(R(G1))u1V(G1),u2V(R(G1))V(G1)[[d2(u1)]+[d2(u2)]+[d2(u1)d2(v1)]+[2d(u1)d(v1)]+[2d2(u1)d(v1)]+[d2(v1)]+[2d(u1)d2(v1)]+[d2(u2)d2(v2)]+[2d2(u2)d(v2)]]=8e2F(G1)+16e1e2+4F(G1)F(G2)+4M1(G1)M1(G2)+8F(G1)M1(G2)+2e1F(G2)+4M1(G1)F(G2)+8e1F(G2)+16e1M1(G2), 3=16e2F(G1)+12e1F(G2)+8F(G1)F(G2)+8M1(G1)M1(G2)+16F(G1)M1(G2)+8F(G2)M1(G1)+16e1M1(G2)+16e1e2.Hence, F(G1RG2)=8[n2+6e2]F(G1)+[n1+20e1]F(G2)+8F(G1)F(G2)+48e1e2+24e2M1(G1)+36e1M1(G2)+24M1(G1)M1(G2)+24F(G1)M1(G2)+12F(G2)M1(G1)+8n2e1.

Theorem 3

Let Gi be a connected graph with ni vertices and ei edges, i=1, 2. Then F(G1QG2)=[n2+12e2+9M1(G2)]F(G1)+[n1+6e1+3M1(G1)+6M2(G1)]F(G2)+[n2+4e2+M1(G2)][M4(G1)+2M21(G1)+uV(G1)d2(u)vN(u)d(v)]+6[e2M1(G1)+e1M1(G2)+2(e2+M1(G2))M2(G1)]+2[2F(G1)F(G2)+3M1(G1)M1(G2)]where M21(G1)=uvE(G1) (du+dv)dudv

Proof

F(G1QG2)=(u1,v1)(u2,v2)E(G1QG2)[d(u1,v1)2+d(u2,v2)2]=u1=u2V(G1)v1v2E(G2)[d(u1,v1)2+d(u2,v2)2]+v1=v2V(G2)u1u2E(Q(G1))[d(u1,v1)2+d(u2,v2)2]+v1v2E(G2)u1u2E(Q(G1))[d(u1,v1)2+d(u2,v2)2]=1+2+3.Then 1=u1=u2V(G1)v1v2E(G2)[d(u1,v1)2+d(u2,v2)2]=2e2M1(G1)+n1F(G2)+M1(G1)F(G2)+4e1M1(G2)+2M1(G1)M1(G2)+4e1F(G2)as this summation is same in F(G1SG2). 2=v1=v2V(G2)u1u2E(Q(G1))[d(u1,v1)2+d(u2,v2)2]=v1=v2V(G2)u1u2E(Q(G1))u1V(G1),u2V((QG1)V(G1))[d(u1,v1)2+d(u2,v2)2]+v1=v2V(G2)u1u2E(Q(G1))u1,u2V(Q(G1))V(G1)[d(u1,v1)2+d(u2,v2)2]=2+2. 2=v1=v2V(G2)u1u2E(Q(G1))u1V(G1),u2V(QG1)V(G1)[d(u1,v1)2+d(u2,v2)2]=vV(G2)u1u2E(QG1)u1V(G1),u2V(QG1)V(G1)[(d(u1)+d(v)+d(u1)d(v))2+(d(u2)+d(u2)d(v))2]=vV(G2)u1u2E(G1)u1V(G1),u2V(QG1)V(G1)[d2(u1)+d2(v)+d2(u1)d2(v)+2d(u1)d(v)+2d(u1)d2(v)+2d2(u1)d(v)+d2(u2)+d2(u2)d2(v)+2d2(u2)d(v)]Consider S1=u1u2E(QG1)u1V(G1),u2V(QG1)V(G1)d2(u1)In S1, u1V(G1) and d2u1 occurs du1 times. Thus S1=u1u2E(QG1)u1V(G1),u2V(QG1)V(G1)d3(u1)=F(G1).Let S2=u1u2E(QG1)u1V(G1),u2V(QG1)V(G1)d2(u2)as u2=uvE(G1), d2u2 occurs two times. Therefore S2=2u2=uvV(QG1)V(G1)[du+dv]2=2uvE(G1)[d2u+d2v+2dudv]=2[F(G1)+2M2(G1)]Hence 2=n2F(G1)+2e1M1(G2)+M1(G2)F(G1)+4e2M1(G1)+4e2F(G1)+2M1(G1)M1(G2)+2n2[F(G1)+2M2(G1)]+2M1(G2)[F(G1)+2M2(G1)]+8e2[F(G1)+2M2(G1)] 2=v1=v2V(G2)u1u2E(Q(G1))u1,u2V(QG1)V(G1)[d(u1,v1)2+d(u2,v2)2]=vV(G2)u1u2E(QG1)u1,u2V(QG1)V(G1)[(d(u1)+d(u1)d(v))2+(d(u2)+d(u2)d(v))2]=vV(G2)u1u2E(QG1)u1,u2V(QG1)V(G1)[[d2(u1)+d2(u2)]+d2(v)[d2(u1)+d2(u2)]+2d(v)[d2(u1)+d2(u2)]]Consider S3=u1u2E(QG1)u1,u2V(QG1)V(G1)[d2(u1)+d2(u2)]In S3, coefficient of d2u = 2 CdG1(u)2 + vN(u) d(v) – d(u)

= d2(u) – 2d(u) + vN(u) d(v)

Therefore, uV(G1)d2(u)=uV(G1)[d2(u)2d(u)+vN(u)d(v)]d2(u)=M4(G1)2F(G1)+uV(G1)d2(u)vN(u)d(v)For coefficient of dudv, let u1u2E(QG1) with u1=uv and u2=wz. As u1u2E(QG1), we have either v=w or z or u=w or z. So uv is adjacent to all those vertices in G1 which are adjacent to u and v. So number of such dudv is (du+dv2).

Therefore, 2uvE(G1)dudv=2uvE(G1)(du+dv2)dudv=2uvE(G1)(du+dv)dudv4uvE(G1)dudv=2M21(G1)4M2(G1)So,S3=M4(G1)2F(G1)+uV(G1)d2(u)vN(u)d(v)+2M21(G1)4M2(G1) So2=[n2+4e2+M1(G2)][M4(G1)2F(G1)+2M21(G1)4M2(G1)]+uV(G1)d2(u)vN(u)d(v) 2=2[e1+M!(G1)]M1(G2)+4e2M1(G1)+[n2+4e2+M1(G2)][M4(G1)+F(G1)+uV(G1)d2(u)vN(u)d(v)+2M21(G1)] 3=v1v2E(G2)u1u2E(Q(G1))[d(u1,v1)2+d(u2,v2)2]=v1v2E(G2)u1u2E(Q(G1))u1V(G1),u2V(Q(G1))V(G1)[d(u1,v1)2+d(u2,v2)2]+v1v2E(G2)u1u2E(Q(G1))u1,u2V(Q(G1))V(G1)[d(u1,v1)2+d(u2,v2)2]=3+3. 3=v1v2E(G2)u1u2E(Q(G1))u1V(G1),u2V(Q(G1))V(G1)[d(u1,v1)2+d(u2,v2)2]=v1v2E(G2)u1u2E(Q(G1))u1V(G1),u2V(Q(G1))V(G1)[(d(u1)+d(v1)+d(u1)d(v1))2+(d(u2)+d(u2)d(v2))2]=v1v2E(G2)u1u2E(Q(G1))u1V(G1),u2V(Q(G1))V(G1)[d2(u1)+d2(u1)d2(v1)+2d(u1)d(v1)+2d(u1)d2(v1)+2d2(u1)d(v1)+d2(v1)+d2(u2)+d2(u2)d2(v2)+2d2(u2)d(v2)]=2e2F(G1)+F(G1)F(G2)+2M1(G1)M1(G2)+2M1(G1)F(G2)+2F(G1)M1(G2)+2e1F(G2)+[4e2+2F(G2)+4M1(G2)][F(G1)+2M2(G1)]=6[e2+M1(G2)]F(G1)+3F(G1)F(G2)+2M1(G1)M1(G2)+2[e1+M1(G1)+2M2(G1)]F(G2)+8M2(G1)[e2+M1(G2)], 3=v1v2E(G2)u1u2E(Q(G1))u1,u2V(Q(G1))V(G1)[d(u1,v1)2+d(u2,v2)2]=v1v2E(G2)u1u2E(Q(G1))u1,u2V(Q(G1))V(G1)[(d(u1)+d(u1)d(v1))2(d(u2)+d(u2)d(v2))2]=v1v2E(G2)u1u2E(Q(G1))u1,u2V(Q(G1))V(G1)[[d2(u1)+d2(u2)]+[d2(u1)d2(v1)+d2(u2)d2(v2)]+2[d2(u1)d(v1)+d2(u2)d(v2)]]=2e2[F(G1)+2M2(G1)]+F(G2)[F(G1)+2M2(G1)]+2M1(G2)[F(G1)+2M2(G1)], 3=8[e2+M1(G2)]F(G1)+4F(G1)F(G2)+2M1(G1)M1(G2)+2[e1+M1(G1)+3M2(G1)]F(G2)+12[e2+M1(G2)]M2(G1).Hence, F(G1QG2)=[n2+12e2+9M1(G2)]F(G1)+[n1+6e1+3M1(G1)+6M2(G1)]F(G2)+[n2+4e2+M1(G2)][M4(G1)+2M21(G1)+uV(G1)d2(u)vN(u)d(v)]+6[e2M1(G1)+e1M1(G2)+2(e2+M1(G2))M2(G1)]+2[2F(G1)F(G2)+3M1(G1)M1(G2)]

Combining Theorems 2 and 3 we get

Theorem 4

F(G1TG2)=[8n2+54e2]F(G1)+[n1+12e1]F(G2)+11F(G1)F(G2)+24e2M1(G1)+12[e1M1(G2)+e2M2(G1)]+24M1(G1)M1(G2)+12M1(G1)F(G2)+30F(G1)M1(G2)+6M2(G1)[2M1(G2)+F(G2)]+[n2+M1(G2)+4e2][M4(G1)+2M21(G1)+uV(G1)d2(u)vN(u)d(v)]

Example 1

Applying theorems above to the graphs G1=Pm and G2=Pn, we have n1=|V(G1)|=m, n2=|V(G2)|=n, e1=|E(G1)|=m1, e2=|E(G1)|=n1, M1(G1)=4m6, M1(G2)=4n6, M2(G1)=4(m2), where m>2, M2(G2)=4(n2), where n>2, M4(G1)=16m30, M21(G1)=16m36, where m3, uV(G1) d2(u) vN(u)d(v)=16m36, F(G1)=8m14 and F(G2)=8n14. And F(PmSPn)=728mn1078m990n+1460, if m2,n2;F(PmRPn)=2960mn4334m4680n+6816, if m2,n2;F(PmQPn)=1952mn2758m3636n+5056, if m3,n2;F(PmTPn)=4184mn6014m7326n+10412, if m3,n2.

Example 2

Applying theorems above to the graphs G1=Cm and G2=Cn, we have n1=|V(G1)|=m, n2=|V(G2)|=n, e1=|E(G1)|=m, e2=|E(G1)|=n, M1(G1)=4m, M1(G2)=4n, M2(G1)=4m, M2(G2)=4n, where m,n3, M4(G1)=16m, M21(G1)=16m, uV(G1) d2(u) vN(u)d(v)=16m, F(G1)=8m, F(G2)=8n. And F(CmSCn)=728mn, if m,n3;F(CmRCn)=2960mn, if m,n3;F(CmQCn)=1952mn, if m,n3;F(CmTCn)=4184mn, if m,n3.

Example 3

Applying theorems above to the graphs G1=Pm and G2=Cn, we have n1=|V(G1)|=m, n2=|V(G2)|=n, e1=|E(G1)|=m1, e2=|E(G1)|=n, M1(G1)=4m6, M1(G2)=4n, M2(G1)=4m8, M2(G2)=4n, where m2, n3, M4(G1)=16m30, M21(G1)=16m36, where m3, uV(G1) d2(u) vN(u)d(v)=16m36, F(G1)=8m14, F(G2)=8n. And F(PmSCn)=728mn990n, if m2,n3;F(PmRCn)=2960mn4680n, if m2,n3;F(PmQCn)=1952mn3636n, if m,n3;F(PmTCn)=4184mn7326n, if m,n3.

3 Summary and conclusions

In this work, we study the F index of graphs G1FG2 based on operations related to the strong product, subdivision and total graph, and obtain the expressions for F(G1SG2), F(G1RG2) , F(G1QG2) and F(G1TG2) in terms of F indices of G1,G2, the first Zagreb indices of G1,G2, and the second Zagreb index of G2, and use them to compute the F index of PmFPn, CmFCn and PmFCn.

References

  • GutmanI., TrinajstićN., Graph theory and molecular orbitals. Total π-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 1972 535–538
  • GutmanI., RučičB., TrinajstićN., WilcoxC.F., Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys., 62 1975 3399–3405
  • FurtulaB., GutmanI., A forgotten topological index, J. Math. Chem., 53 2015 1184–1190
  • GaoW., SiddiquiM.K., ImranM., JamilM.K., FarahaniM.R., Forgotten topological index of chemical structure in drugs, Saudi Pharm. J., 24 2016 258–264
  • CheZ., ChenZ., Lower and upper bounds of the forgotten topological index, MATCH Commun. Math. Comput. Chem., 76 2016 635–648
  • AzariM., IranmaneshA., Chemical graphs constructed from rooted product and their Zagreb indices, MATCH Commun. Math. Comput. Chem., 70 2013 901–919
  • AzariM., IranmaneshA., GutmanI., Zagreb indices of bridge and chain graphs, MATCH Commun. Math. Comput. Chem., 70 2013 921–938
  • DasK.C., GutmanI., Some properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 52 2004 103–C112
  • da FonsecaC.M., StevanovicD., Further properties of the second Zagreb index, MATCH Commun. Math. Comput. Chem., 72 2014 655–668
  • DengH., BalachandranS., AyyaswamyS.K., VenkatakrishnanY.B., On the average eccentricity, the harmonic index and the largest signless laplacian eigenvalue of a graph, Trans. Comb., 642017 43–50
  • GutmanI., DasK.C., The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50 2004 83–92
  • LiuM., LiuB., Second Zagreb indices of unicyclic graphs with given degree sequences, Discrete Appl. Math., 167 2014 217–221
  • YuanW., ZhangX., The second Zagreb indices of graphs with given degree sequences, Discrete Appl. Math., 185 2015 230–238
  • HuY., LiX., ShiY., XuT., GutmanI., On molecular graphs with smallest and greatest zeroth-order general Randić index, MATCH Commun. Math. Comput. Chem., 5422005 425–434
  • HuY., LiX., ShiY., XuT., Connected (n m)-graphs with minimum and maximum zeroth-order general Randić index, Discrete Appl. Math., 15582007 1044–1054
  • LiX., ShiY., A survey on the Randić index, MATCH Commun. Math. Comput. Chem., 5912008 127–156
  • KhalifehM.H., Yousefi-AzariH., AshrafiA.R., The first and second Zagreb indices of some graph operations, Discrete Appl. Math., 157 2009 804–811
  • DengH., SaralaD., AyyaswamyS.K., BalachandranS., The Zagreb indices of four operations on graphs, Appl. Math. Comput., 275 2016 422–431
  • SaralaD., DengH., AyyaswamyS.K., BalachandranS., The Zagreb indices of graphs based on four new operations related to the lexicographic product, Appl. Math. Comput., 309 2017 156–169
  • AkhterShehnaz, ImranMuhammad, Computing the forgotten topological index of four operations on graphs, AKCE Int. J. Graphs Comb., 14 2017 70–79
  • EliasiM., TaeriB., Four new sums of graphs and their Wiener indices, Discrete Appl. Math., 157 2009 794–803
  • CvetkocićD.M., DoobM., SachsH., Spectra of Graphs Theory and Application 1980Academic Press New York
  • YarahmadiZ., MoradiS., DošlićT., Eccentric connectivity index of graphs with subdivided edges, Electron. Notes Discrete Math., 45 2014 167–176