157
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Enhancement of microbial nitrification to reduce ammonia emission from poultry manure: a review

, , &
Pages 839-856 | Received 18 Dec 2012, Accepted 10 Mar 2014, Published online: 23 Sep 2019
 

Abstract

Ammonia (NH3) emissions from poultry farming operations have become a crucial concern due to their potential adverse effects on performance, birds and human health, and the environment. Due to genetic improvements, current commercial poultry require high quality balanced nutrition to maintain their rapid growth and production. Amino acids are components of protein nutrition that greatly influence the growth of the birds, and methionine is the first limiting essential amino acid in the high protein diets of poultry. However, excess or misuse of amino acid supplementation to poultry diets increases nitrogen (N) excretion and emissions to the environment. Currently, there are limited numbers of research publications regarding NH3 emissions from poultry manure, and few of them address manure enhancement by microbial nitrification. Therefore, the aim of this review is to evaluate the potential of soil nitrifying bacteria to reduce NH3 volatilisation and enhance N retention in poultry manure. This review presents the current status of knowledge regarding soil nitrifying bacteria, NH3 nitrification, and summarises the strategies to enhance microbial nitrification of poultry manure, and the environmental ramifications when using different techniques to control NH3 emissions. In spite of the fact that there are few research studies on reducing NH3 volatilisation through nitrification, it has been concluded that nitrification would be a sustainable method for mitigating N excretion and NH3 emission from poultry; however, further research is needed to identify the proper nitrifying bacteria to enhance microbial nitrification.

Acknowledgements

This review was supported by a University of Georgia Start-up grant, Manitoba Egg Farmers, Manitoba Agri-Food Research and Development Initiative (ARDI) and Natural Science and Engineering Council (NSERC)-Discovery and in part by Hatch Grant H8311 administered by the Texas Agricultural Experimental Station and USDA-NRI grant # 2000-02614.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 128.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.