Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 47, 2000 - Issue 4
102
Views
15
CrossRef citations to date
0
Altmetric
Original Articles

Origin of megacrystic felsic gneisses at Broken Hill

&
Pages 733-748 | Published online: 08 Nov 2010
 

Three sheet‐like bodies of felsic gneiss containing abundant K‐feldspar megacrysts (megacrystic felsic gneiss, augen gneiss or granite gneiss) surrounding the Broken Hill Line of Lode in western New South Wales, Australia, are inferred to be pre‐ to syn‐D1 granitoids. We interpret the Feral gneiss to be a pre‐ to early syn‐D1 intrusion, as it contains S1 as its earliest foliation. However, it has no magmatic flow foliation. The Alma Gneiss, and the megacrystic portions of the Rasp Ridge Gneiss, northwest of the Line of Lode, both contain S1 parallel to a magmatic flow foliation, and are interpreted as having been magmatic during D1. Therefore, the Alma and Rasp Ridge Gneisses may have been intruded during D1, probably just after the Feral gneiss, as the Alma Gneiss intrudes the Feral gneiss. S1 in the augen gneisses and the wall rocks is defined by biotite, sillimanite, garnet and ribbon quartz, and indicates that high‐grade metamorphic conditions accompanied D1. Evidence suggesting that these rocks were originally granitoids includes: (i) the Alma Gneiss transecting and intricately intruding the Feral gneiss, the contacts being transected by S1; (ii) euhedral to subhedral K‐feldspar porphyroclasts (former phenocrysts), especially those with concentrically arranged inclusions; (iii) microgranitoid enclaves, particularly where megacrystic and relatively large; (iv) aplite dykes (most common in plutonic rocks and therefore reliable indicators); (v) metasedimentary xenoliths; (vi) magmatic flow foliations overprinted by parallel tectonic foliations; and (vii) chemical affinities with undoubted Australian Proterozoic granitoids. Therefore, felsic gneisses at Broken Hill should not be used for stratigraphic correlation, unless they can be definitely determined to be of volcanic flow or tuffaceous origin. The inferred intrusion of granitoids early in the tectonic history of the Broken Hill Block suggests that they may have contributed to the metamorphic and/or hydrothermal heat, and may have helped concentrate metals to form orebodies.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.