Publication Cover
Australian Journal of Earth Sciences
An International Geoscience Journal of the Geological Society of Australia
Volume 47, 2000 - Issue 6
104
Views
36
CrossRef citations to date
0
Altmetric
Original Articles

Sr and Nd isotopic investigations towards the origin of feldspar megacrysts in microgranular enclaves in two I‐type plutons of the Lachlan Fold Belt, southeast Australia

, , &
Pages 1105-1112 | Published online: 08 Nov 2010
 

New Sr and Nd isotopic data are presented for several large feldspar crystals occurring in microgranular enclaves in the Swifts Creek and Bridle Track plutons, along with analyses of their host enclave groundmass and adjacent granitoid. In the Swifts Creek Pluton several previous studies have concluded that the microgranular enclaves represent admixed, more mafic and more primitive magmas, and new data presented here confirm that. Feldspar megacrysts in the microgranular enclaves have Sr and Nd isotopic signatures that are distinct from the surrounding enclave groundmass and from other enclaves in the pluton and therefore cannot have crystallised in situ. Isotopic compositions of these feldspars are more consistent with their having crystallised in a reservoir similar in composition to the most primitive granitoid analyses. The crystals were then physically transferred from the granitoid magma into the enclave while the latter was still partially liquid, thus invalidating arguments for a porphyroblastic origin. Field, petrographic and geochemical data are consistent with microgranular enclaves in the Bridle Track pluton also originating as admixed, more mafic magmas. However, Sr isotopic compositions of the enclaves are identical, within error, to the host granite and indicate that significant Sr isotopic equilibration has occurred. Nd isotopic compositions of the enclaves extend to slightly higher 143Nd/144Nd(i) and are consistent with a mingled magma origin followed by major isotopic equilibration. Feldspar phenocrysts in the studied enclave have isotopic compositions indistinguishable from both the enclave groundmass and host granite, preventing an interpretation of their origin using isotopic evidence alone.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.