39
Views
12
CrossRef citations to date
0
Altmetric
Theoretical Paper

Optimal placement, scheduling, and routing to maximize lifetime in sensor networks

, , &
Pages 1000-1012 | Received 01 Jan 2008, Accepted 01 Nov 2008, Published online: 21 Dec 2017
 

Abstract

A wireless sensor network is a network consisting of distributed autonomous electronic devices called sensors. Sensors have limited energy and capability for sensing, data processing, and communicating, but they can collectively behave to provide an effective network that monitors an area and transmit information to gateway nodes or sinks, either directly or through other sensor nodes. In most applications the network must operate for long periods of time, so the available energy resources of the sensors must be managed efficiently. In this paper, we first develop a mixed integer linear programming model to maximize network lifetime by optimally determining locations of sensors and sinks, activity schedules of deployed sensors, and data flow routes from sensors to sinks over a finite planning horizon subject to coverage, flow conservation, energy consumption, and budget constraints. Unfortunately, it is difficult to solve this model exactly even for small instances. Therefore, we propose two approximate solution methods: a Lagrangean heuristic and a two-stage heuristic in which sensors are deployed and an activity schedule is found in the first stage, whereas sinks are located and sensor-to-sink data flow routes are determined in the second stage. Computational experiments performed on various test instances indicate that the Lagrangean heuristic is both efficient and accurate and also outperforms the two-stage heuristic.

Acknowledgements

We thank two anonymous referees for their helpful comments and suggestions that significantly improved the quality and exposition of the paper. We also gratefully acknowledge the support of TÜBİTAK (The Scientific and Technological Research Council of Turkey) under grant no. 107M250.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 277.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.