59
Views
4
CrossRef citations to date
0
Altmetric
General Paper

Resource-constrained project scheduling with concave processing rate functions

&
Pages 794-806 | Received 16 Sep 2013, Accepted 17 Mar 2014, Published online: 21 Dec 2017
 

Abstract

In this paper, we address a resource-constrained project scheduling problem involving a single resource. The resource can be applied at varying consumption rates to the activities of the project. The duration of each activity is defined by a convex, non-increasing time-resource trade-off function. In addition, activities are not preemptable (ie, the resource consumption rate of an activity cannot be altered while the activity is being processed). We explicitly consider variation of the rate at which an activity is performed with variation in resource consumption rate. We designate the number of units (amount of an activity) performed per unit time with variation in resource consumption rate as the processing rate function, and assume this function to be concave. We present a tree-search-based method in concert with the solution of a nonlinear program and the use of dominance properties to determine: (i) the sequence in which to perform the activities of the project, and (ii) the resource consumption rate to allocate to each activity so as to minimize the project duration (makespan). We also present results of an experimental investigation that reveal the efficacy of the proposed methodology. Finally, we present an application of this methodology to a practical setting.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 277.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.