41
Views
10
CrossRef citations to date
0
Altmetric
Theoretical Paper

Solving the generalized minimum spanning tree problem by a branch-and-bound algorithm

, &
Pages 382-389 | Received 01 Jan 2002, Accepted 01 Sep 2003, Published online: 21 Dec 2017
 

Abstract

We present an exact algorithm for solving the generalized minimum spanning tree problem (GMST). Given an undirected connected graph and a partition of the graph vertices, this problem requires finding a least-cost subgraph spanning at least one vertex out of every subset. In this paper, the GMST is formulated as a minimum spanning tree problem with side constraints and solved exactly by a branch-and-bound algorithm. Lower bounds are derived by relaxing, in a Lagrangian fashion, complicating constraints to yield a modified minimum cost spanning tree problem. An efficient preprocessing algorithm is implemented to reduce the size of the problem. Computational tests on a large set of randomly generated instances with as many as 250 vertices, 1000 edges, and 25 subsets provide evidence that the proposed solution approach is very effective.

Acknowledgements

We would like to thank two anonymous referees for their valuable suggestions that have led to several improvements.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 277.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.