29
Views
14
CrossRef citations to date
0
Altmetric
Theoretical Paper

A cost model for N-version programming with imperfect debugging

&
Pages 986-994 | Received 01 Aug 2004, Accepted 01 Jun 2005, Published online: 21 Dec 2017
 

Abstract

One of the challenging problems for software companies is to find the optimal time of release of the software so as to minimize the total cost expended on testing and potential penalty cost due to unresolved faults. If the software is for a safety critical system, then the software release time becomes more important. The criticality of a failure caused by a fault also becomes an important issue for safety critical software. In this paper we develop a total cost model based on criticality of the fault and cost of its occurrence during different phases of development for N-version programming scheme, a popular fault-tolerant architecture. The mathematical model is developed using the reliability growth model based on the non-homogeneous Poisson process. The models for optimal release time under different constraints are developed under the assumption that the debugging is imperfect and there is a penalty for late release of the software. The concept of Failure Mode Effects and Criticality Analysis is used for measuring criticality.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 277.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.