497
Views
17
CrossRef citations to date
0
Altmetric
Article

Toward net-zero carbon manufacturing operations: an onsite renewables solution

, , &
Pages 308-321 | Received 08 Jul 2015, Accepted 06 Jun 2016, Published online: 21 Dec 2017
 

Abstract

A growing number of manufacturing firms are striving to achieve eco-friendly operations through onsite wind or solar generation. This paper proposes a zero-carbon power supply model to guide the integration of onsite renewable energy into manufacturing facilities. We intend to address two fundamental questions: (1) Is it cost-effective to deploy onsite wind turbines and solar photovoltaics (PVs) systems to achieve net-zero carbon environmental performance? (2) Is the renewable generation system able to meet the electricity demand despite the power intermittency? To answer these questions, we formulate a stochastic optimization model to minimize the levelized cost of onsite renewable energy. The goal is achieved by optimizing the sizing of wind and solar generating units. The proposed energy solution is tested in ten cities around the world under diverse climatic conditions. While PV is still expensive, we conclude that manufacturers could realize zero-carbon emissions at affordable cost provided the local wind speed is above 5 m/s.

Acknowledgements

The research is supported in part by the U.S. Department of Agriculture (# 2011-38422-30803), and in part by The National Natural Science Fund of China (#71172162).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 277.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.