185
Views
28
CrossRef citations to date
0
Altmetric
Article

Well-tuned algorithms for the Team Orienteering Problem with Time Windows

, , &
Pages 861-876 | Received 13 Oct 2016, Accepted 03 May 2017, Published online: 21 Dec 2017
 

Abstract

The Team Orienteering Problem with Time Windows (TOPTW) is the extension of the Orienteering Problem (OP) where each node is limited by a predefined time window during which the service has to start. The objective of the TOPTW is to maximize the total collected score by visiting a set of nodes with a limited number of paths. We propose two algorithms, Iterated Local Search and a hybridization of Simulated Annealing and Iterated Local Search (SAILS), to solve the TOPTW. As indicated in multiple research works on algorithms for the OP and its variants, determining appropriate parameter values in a statistical way remains a challenge. We apply Design of Experiments, namely factorial experimental design, to screen and rank all the parameters thereby allowing us to focus on the parameter search space of the important parameters. The proposed algorithms are tested on benchmark TOPTW instances. We demonstrate that well-tuned ILS and SAILS lead to improvements in terms of the quality of the solutions. More precisely, we are able to improve 50 best known solution values on the available benchmark instances.

Acknowledgements

This research project is funded by National Research Foundation Singapore under its Corp Lab @ University scheme and Fujitsu Limited.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 277.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.