40
Views
7
CrossRef citations to date
0
Altmetric
Research Articles

Joint elastic and petrophysical inversion using prestack seismic and well log data

, , &
Pages 331-340 | Received 23 Jul 2014, Accepted 23 Aug 2015, Published online: 06 Dec 2018
 

Abstract

Seismic inverse problems aim to infer the properties of subsurface geology, such as elastic and petrophysical properties. Existing seismic inversion methods for the joint estimation of these properties are mainly based either on Gassmann theory for prestack seismic data processed with stochastic optimisation techniques or on the Wyllie formula for poststack seismic data processed by deterministic optimisation techniques. The purpose of this study is to develop a strategy for the joint estimation of elastic and petrophysical properties from prestack seismic data based on Gassmann equations with deterministic optimisation techniques. Given poor-quality prestack seismic data, two regularisation parameters are introduced to control the trade-off between fidelity to the data and the smoothness of the solution. An appropriate linearised system of equations for the joint model update is derived from Newton’s method, which fits seismic data, the description of the rock physics medium and prior information, simultaneously. We show the preliminary results obtained with the proposed framework for synthetic and real data examples.

We present a strategy for the joint estimation of elastic and petrophysical properties from prestack seismic data based on Gassmann equations with deterministic optimisation techniques. Given poor-quality prestack seismic data, two regularisation parameters are introduced to control the trade-off between fidelity to the data and the smoothness of the solution.

Acknowledgements

This work was supported by National Natural Science Foundation of China Grant 41374134. We would like to thank the Editor, Dr Mark Lackie, the Associate Editor and anonymous reviewers for their constructive comments on the manuscript.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 249.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.