34
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Forward modelling of spectral depths using 3D Fourier convolution

Pages 166-176 | Received 03 Sep 2015, Accepted 05 Dec 2015, Published online: 06 Dec 2018
 

Abstract

A procedure for creating depth transects across the Northern Territory (Australia) has been established using magnetic spectral depths. Although these transects showed depths to layers, they failed to show depths in the upper few hundred metres. Because the magnetic depths had been derived on the basis of heterogeneity of the bodies, a method of forward modelling based on heterogeneity is needed to explain this limitation and other issues. Spatial convolutions based on heterogeneity suffice for primitive models but are too slow for detailed work.

This paper demonstrates fast forward modelling using Fourier convolution, that is convolution of three-dimensional (3D) arrays via the frequency domain, to obtain total magnetic intensity grids and magnetic depth profiles for hypothetical structures. Randomly located dipoles are used to simulate the heterogeneity of the material of modelled bodies.

The loss of shallow depth signal in the magnetic transects is shown to arise mainly from the limitation of the line spacing of the underlying surveys. Depths of bodies at less than half the line spacing of the survey are not resolved at all and depths less than the line spacing itself appear deeper than the actual source depth.

Fourier convolution works equally well with non-layered, non-prismatic bodies. Modelling of an inclined, elliptical body is demonstrated by way of example. The associated depth profile shows a clear equivalent layer at a depth representative for such a body. The result allows interpretation of a characteristic pattern in magnetic depth transects as indicating the depth to a relatively compact non-layered body.

Fourier convolution showed a considerable speed advantage over spatial convolution at all array sizes used in the study. Convolutions of model arrays of 1000 × 1000 × 500 were calculated within a few minutes.

3D Fourier convolution is a fast method for forward modelling irregular magnetic bodies. A kernel consisting of the field of a single dipole, convolved over a random distribution of dipoles, simulates the heterogeneity of bulk material. A demonstration studies the depth information collected by different survey parameters.

Acknowledgements

The Northern Territory Geological Survey has for several years supported this research into magnetic source depths. This work was supported by a grant from the Australian Society of Exploration Geophysics Research Foundation.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 249.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.