43
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Acoustic VTI reverse time migration based on an improved source wavefield storage strategy

, , &
Pages 891-897 | Received 24 Jan 2017, Accepted 23 Jan 2018, Published online: 04 Feb 2019
 

Abstract

Advances in computational capabilities as well as ongoing improvements in storage strategies have made reverse time migration (RTM) a feasible method for capturing images of complex structures. However, large storage requirements still restrict RTM applications, especially in anisotropic media. Utilising a first-order quasi-P-wave equation in vertically transversely isotropic (VTI) media, we investigate anisotropy and deduce an RTM equation for a staggered-grid high-order finite difference (FD) scheme incorporating a perfectly matched layer (PML) boundary in this study. We also develop an improved source wavefield storage strategy via a PML boundary method for VTI medium RTM using graphic processing unit (GPU) accelerated computation. Our proposed method significantly reduces the total volume of data storage required for conventional RTM while increasing calculation time by just a small amount. Checkpoints can be set based on GPU memory size, leading to the generation of high precision and high efficiency subsurface images. We carried out a series of numerical tests on simple anisotropic media and complex Hess 2D VTI models to verify the effectiveness of our proposed method.

The reverse time migration (RTM) equations for staggered-grid high order finite difference scheme incorporating a perfectly matched layer boundary for vertically transversely isotropic (VTI) media are proposed, and checkpoints and GPU accelerated techniques are utilised for data storage and computation efficiency. Hess 2D model tests demonstrate the effectiveness of the proposed algorithm.

Acknowledgements

This research was supported by a Project of the National Natural Science Foundation of China (grant nos 41574117, 41474118), the Excellent Youth Foundation of Heilongjiang Province, China (grant no. JC2016006) and The Northeast Petroleum University Excellent Scientific Talent Fund (grant no. GLJHB201601).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 249.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.