44
Views
0
CrossRef citations to date
0
Altmetric
Original Paper

Utilization of artificial intelligence in minimally invasive right adrenalectomy: recognition of anatomical landmarks with deep learning

ORCID Icon, , , , , , & show all
Received 09 Apr 2024, Accepted 30 May 2024, Published online: 10 Jun 2024
 

Abstract

Background

The primary surgical approach for removing adrenal masses is minimally invasive adrenalectomy. Recognition of anatomical landmarks during surgery is critical for minimizing complications. Artificial intelligence-based tools can be utilized to create real-time navigation systems during laparoscopic and robotic right adrenalectomy. In this study, we aimed to develop deep learning models that can identify critical anatomical structures during minimally invasive right adrenalectomy.

Methods

In this experimental feasibility study, intraoperative videos of 20 patients who underwent minimally invasive right adrenalectomy in a tertiary care center between 2011 and 2023 were analyzed and used to develop an artificial intelligence-based anatomical landmark recognition system. Semantic segmentation of the liver, the inferior vena cava (IVC), and the right adrenal gland were performed. Fifty random images per patient during the dissection phase were extracted from videos. The experiments on the annotated images were performed on two state-of-the-art segmentation models named SwinUNETR and MedNeXt, which are transformer and convolutional neural network (CNN)-based segmentation architectures, respectively. Two loss function combinations, Dice-Cross Entropy and Dice-Focal Loss were experimented with for both of the models. The dataset was split into training and validation subsets with an 80:20 distribution on a patient basis in a 5-fold cross-validation approach. To introduce a sample variability to the dataset, strong-augmentation techniques were performed using intensity modifications and perspective transformations to represent different surgery environment scenarios. The models were evaluated by Dice Similarity Coefficient (DSC) and Intersection over Union (IoU) which are widely used segmentation metrics. For pixelwise classification performance, accuracy, sensitivity and specificity metrics were calculated on the validation subset.

Results

Out of 20 videos, 1000 images were extracted, and the anatomical landmarks (liver, IVC, and right adrenal gland) were annotated. Randomly distributed 800 images and 200 images were selected for the training and validation subsets, respectively. Our benchmark results show that the utilization of Dice-Cross Entropy Loss with the transformer-based SwinUNETR model achieved 78.37%, whereas the CNN-based MedNeXt model reached a 77.09% mDSC score. Conversely, MedNeXt reaches a higher mIoU score of 63.71% than SwinUNETR by 62.10% on a three-region prediction task.

Conclusion

Artificial intelligence-based systems can predict anatomical landmarks with high performance in minimally invasive right adrenalectomy. Such tools can later be used to create real-time navigation systems during surgery in the near future.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Data availability

Data are available to anyone upon reasonable request.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 258.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.