104
Views
4
CrossRef citations to date
0
Altmetric
ORIGINAL ARTICLE

Quantitative analysis of mRNA in human temporal bones

, , , , , & show all
Pages 1024-1030 | Received 29 Sep 2006, Published online: 08 Jul 2009
 

Abstract

Conclusion. Well-preserved mRNA could be extracted from frozen human inner ears. Therefore, this study demonstrates that analysis of mRNA could be performed to study the molecular mechanisms of inner ear disorders using human specimens. Objectives. Analysis of RNA as well DNA is requisite to study the molecular mechanisms of inner ear disorders. Methods of isolating RNA from experimental animals have been established, while isolation of RNA from human inner ears is much more challenging. In the present study, we demonstrate a method by which messenger RNA (mRNA) was extracted from human inner ears and quantitatively analyzed. Materials and methods. COCH mRNA as well as GAPDH mRNA was extracted from membranous labyrinths dissected from three formalin-fixed and three frozen human temporal bones, removed at autopsy. The length of COCH mRNA and quantity of GAPDH mRNA was compared between the two groups by quantitative RT-PCR. Results: COCH mRNA could be amplified as much as 976 bp in all three frozen specimens. By contrast, it was amplified to 249 bp in two of the three formalin-fixed specimens, with no amplification observed in the remaining. The quantity of amplifiable GAPDH mRNA in the formalin specimens was only 1% of that of the frozen specimens.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 65.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 226.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.