108
Views
45
CrossRef citations to date
0
Altmetric
Original Articles

A model for the metal-to-insulator transition in V2O3

&
Pages 207-261 | Published online: 02 Jun 2006
 

Abstract

The metal-to-insulator transition in V2O3 is described by a model that is based on the electronic band structure of this material. The vanadium 3d-t 2g band decomposes in the trigonal symmetry into two bands, a 1g and e π. The a 1g band consists of orbitals connecting pairs of c-axis neighbouring atoms, while the e π band consists of orbitals in the plane perpendicular to the c-axis. The change in distance between c-axis neighbours changes the nature of the a 1g band from molecular (delocalized) to atomic (localized). The localization of the a 1g electrons causes through the atomic exchange interaction also the localization of the e π electrons, and this localization creates a gap in the e π band which causes the material to become insulating. This model is treated in the Hartree-Fock approximation (the ‘Excitonic’ model) at zero and finite temperatures, and various aspects of the transition, such as changes in the c/a ratio, the creation of magnetic moments, changes in covalency, the effect of pressure and the order of the transition, are investigated.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.