273
Views
40
CrossRef citations to date
0
Altmetric
Statistical Computing

A Tutorial on the SWEEP Operator

Pages 149-158 | Received 01 Mar 1978, Published online: 26 Mar 2012
 

Abstract

The importance of the SWEEP operator in statistical computing is not so much that it is an inversion technique, but rather that it is a conceptual tool for understanding the least squares process. The SWEEP operator can be programmed to produce generalized inverses and create, as by-products, such items as the Forward Doolittle matrix, the Cholesky decomposition matrix, the Hermite canonical form matrix, the determinant of the original matrix, Type I sums of squares, the error sum of squares, a solution to the normal equations, and the general form of estimable functions. First, this tutorial describes the use of Gauss-Jordan elimination for least squares and continues with a description of a completely generalized sweep operator that computes and stores (XX), (XX) XX, (XX) XY, and YYYX(XX) XY, all in the space of a single upper triangular matrix.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.