38
Views
3
CrossRef citations to date
0
Altmetric
Bioanalytical

Studies of Adriamycin Binding to Histone H1 by Resonant Mirror Biosensor and Fluorescence Spectroscopy

, , &
Pages 2151-2164 | Received 05 Jun 2005, Accepted 27 Jun 2005, Published online: 02 Feb 2007
 

Abstract

Adriamycin is a clinically used antitumor anthracycline antibiotic. Histone H1 is a target for the activity of anthracycline drug at the chromatin level. A new optical biosensor technique based on the resonant mirror was used to characterize interaction of adriamycin with H1, and the binding constant was obtained. By the analysis of fluorescence spectrum and fluorescence intensity, it was shown that adriamycin can quench the intrinsic fluorescence of tyrosine in H1 through a static quenching procedure. The binding constants of adriamycin with H1 were determined at different temperatures based on the fluorescence quenching results. The binding sites were obtained, and the binding forces were suggested to be mainly hydrophobic. The interaction of adriamycin and H1 in the presence of denaturant or salt was studied. The effect of Fe3+ on the binding constant was also investigated by optical biosensor and fluorescence spectroscopy. Furthermore, the steady‐state Stern–Volmer collisional quenching study of Tyr72 with acrylamide indicated that the association between adriamycin and H1 did not change molecular conformation of H1.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30370366).

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.