195
Views
8
CrossRef citations to date
0
Altmetric
SENSORS

Electrochemical Acetylcholine Chloride Biosensor Using an Acetylcholine Esterase Biomimic

, , , , &
Pages 1387-1397 | Received 06 Mar 2008, Accepted 26 Mar 2008, Published online: 10 Jul 2008
 

Abstract

Pure enzymes are costly and highly sensitive to change in pH, temperature, ionic strength etc. Hence biomimetic or synthetic enzymes could be useful alternatives to such natural proteins. Although the selectivity of a biomimic is somewhat less than that of enzyme, it can be used as a detector element in inexpensive but stable biosensors. An organic compound, 4-[(1E)-ethanehydrazonoyl]benzoic acid, has been designed and synthesized as biomimic for the enzyme acetylcholine esterase. An acetylcholine chloride two-electrode screen-printed sensor was first developed using the immobilized enzyme acetylcholine esterase. The performance of the mimic in the hydrolysis of acetylcholine chloride was then tested with the same transducer by immobilizing the biomimic in place of the enzyme. The response of the sensor constructed using the mimic was comparable to that of the pure acetylcholine esterase enzyme electrode.

The authors are grateful to Cranfield University, UK for donating the DEK-245 printing machine. The author PS is grateful to Department of Biotechnology (DBT), India, for awarding research grants.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.