362
Views
30
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Direct Electrochemistry of Glucose Oxidase at a Gold Electrode Modified with Graphene Nanosheets

, , , &
Pages 746-753 | Received 22 Jan 2011, Accepted 18 Aug 2011, Published online: 08 May 2012
 

Abstract

In this work, we report the direct electrochemistry of glucose oxidase (GOD) observed at a gold electrode modified with graphene nanosheets. Initially, graphene nanosheets were synthesized and conjugated to the enzyme GOD and immobilized on to a gold electrode surface. Cyclic voltammetry was then performed using Gold-Graphene-GOD modified electrodes in a pH 7.2 phosphate buffered saline (PBS). A pair of well-defined redox peaks was obtained for GOD with the reduction peak centered at +180 mV and a peak separation of 70 mV in PBS under physiological conditions. Moreover, the electron transfer rate of GOD redox reaction was greatly enhanced and the peak potential was found to be pH dependent at the graphene-GOD surface. Further, the performance of the Gold-Graphene-GOD was found to be stable and excellent under physiological conditions indicating the possibility of employing this platform for real time analysis. The observed results indicated that the 2D-graphene holds great promise for conjugation ability with a variety of enzymes. Further, our results also confirmed that graphene is capable of holding the enzyme GOD in a favorable position and retains its original structure and functionality that are essential for biosensing.

Acknowledgments

This work was supported by the NSF CREST Grant #0734232.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.