227
Views
0
CrossRef citations to date
0
Altmetric
NANOTECHNOLOGY

Growth of CuInS2 Nanotubes from Cu2S-CuInS2 Heterostructures as a Potential Photovoltaic Material

Pages 1587-1596 | Received 07 Dec 2012, Accepted 08 Jan 2013, Published online: 31 May 2013
 

Abstract

Chemically synthesized nanostructures possess well-defined domains with an interconnected network, which helps the carriers to bypass the other material in the solar cell while moving to their respective electrodes. In this work, CuInS2 films constituting CuInS2 nanotubes and nanoparticles were fabricated using a hot-injection chemical technique, followed by sulfurization. Structural and microstructural investigations reveal Cu2S nanoparticle formation at an early stage of growth of nanotubes, serving as possible catalyst sites for the subsequent anisotropic growth of the heterostructured hexagons. The crossover takes place over a number of intermediate stages. This sharing of the heterostructure by the hexagonal Cu2S and chalcopyrite CuInS2 minimizes the lattice distortion. The Cu2S- CuInS2 interface in the heterostructure acts as the nucleation center for CuInS2 nanotubes. Optical absorption and Raman spectroscopy studies reveal better optical properties for CuInS2 nanoparticles as compared to CuInS2 nanotubes. Compared to all other nanostructures, nanowires or nanotubes tend to provide single-crystalline nanograins for direct characterization. These nanoparticles, especially the nanotubes, can be used to form an interconnected network structure of p- and n-type materials in bulk heterojunctions providing the key to improve solar cell efficiencies.

Acknowledgments

The author would like to acknowledge the DST-INSPIRE Faculty Fellowship [IFA-PH-08] for the financial support to carry out the present research work.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.