208
Views
6
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

3,4,9,10-Perylene Tetracarboxylic Acid Noncovalently Modified Multiwalled Carbon Nanotubes: Synthesis, Characterization, and Application for Electrochemical Determination of 2-Aminonaphthalene

, , , &
Pages 2370-2383 | Received 12 Jan 2014, Accepted 12 Mar 2014, Published online: 08 Aug 2014
 

Abstract

Carbon nanotubes have been intensively studied for their diverse applications but are insoluble in water. In this paper, 3,4,9,10-perylene tetracarboxylic acid noncovalently modified multiwalled carbon nanotubes were prepared by a facile approach and applied successfully for electrochemical determination of 2-aminonaphthalene. Infrared spectroscopy, Raman spectroscopy, thermogravimetric analysis, and electrochemical methods were used to characterize the hybridized nanotubes. The results reveal that the hybrids exhibit high dispersibility in water, and a glassy carbon electrode modified by the hybrids displayed a higher electrochemical response toward 2-aminonaphthalene than bare glassy carbon and multiwalled carbon nanotube–glassy carbon electrodes with a linear dynamic range of 15.0–500.0 nM and a detection limit of 4.5 nM. The modified hybrid electrode was successfully applied for the determination of 2-aminonaphthalene in water.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lanl.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.