156
Views
5
CrossRef citations to date
0
Altmetric
BIOSENSORS

Determination of Lead(II) by a Nitrocellulose Membrane Fluorescent Biosensor Based on G-Quadruplex Conformational Changes

, , , , &
Pages 2341-2349 | Received 17 Jan 2014, Accepted 06 Mar 2014, Published online: 08 Aug 2014
 

Abstract

A simple, label-free fluorescence method was developed for the sensitive determination of lead(II) using a nitrocellulose membrane biosensor. The surface of the nitrocellulose membrane was modified by glutaraldehyde to conjugate streptavidin, followed by the immobilization of a DNA probe via a biotin modifier. The biotinylated DNA probe can fold into a G-quadruplex structure in the presence of potassium ion that selectively binds to N-methyl mesoporphyrin IX and yields a strong fluorescence signal. The presence of lead(II) can induce a conformational change of the G-quadruplex to a more compact structure, which results in the release of potassium ion and N-methyl mesoporphyrin IX with a concomitant reduction of the fluorescence signal. The biosensor displayed a detection limit as low as 10 nM with excellent selectivity for lead(II) over other metal ions. The developed biosensor was employed for the determination of lead(II) in spiked river water.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lanl.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.