104
Views
0
CrossRef citations to date
0
Altmetric
FLUORESCENCE

Synthesis and Characterization of CdTe@CdS Quantum Dots Layered on Silica Nanoparticles

, , , , &
Pages 2747-2760 | Received 11 Feb 2014, Accepted 23 Apr 2014, Published online: 30 Aug 2014
 

Abstract

CdTe@CdS quantum dots, cationic polyelectrolyte poly-diallyldimethylammonium chloride, and anionic polyelectrolyte polyacrylic acid were assembled on the surface of silica nanoparticles based on the electrostatic layer-by-layer self-assembly to prepare fluorescent composite nanoparticles. Transmission electron microscopy showed that the particles had a uniform size distribution (approximately 70 nm) and good monodispersity. The fluorescence shielding effect of the silica shell was reduced and the assembled quantum dots were well protected by the sandwich structure. The nanoparticles provided strong fluorescence, high stability for storage, and low photobleaching and leakage. Furthermore, they possessed high fluorescence stability and high-concentration staining for cytoplasm, which enabled them to be used for sensitive cellular imaging analysis. Because of the presence of numerous carboxyl groups, they have potential application for biolabeling and bioanalysis.

Acknowledgments

Bin Zhang and Zhi-Li Ge contributed equally to this work.

Notes

Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/lanl.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.