551
Views
21
CrossRef citations to date
0
Altmetric
ELECTROCHEMISTRY

Electrochemical Determination of Hydrazine at Gold and Platinum Nanoparticles Modified Poly(L-Serine) Glassy Carbon Electrodes

, &
Pages 1015-1031 | Received 16 Dec 2014, Accepted 18 Apr 2015, Published online: 06 Apr 2016
 

ABSTRACT

L-serine monomer was polymerized electrochemically on a glassy carbon electrode by cyclic voltammetry. After L-serine polymerization, gold and platinum metal nanoparticles were doped by electrochemical reduction on the surface. The modified electrodes were characterized by using scanning electron microscopy and electrochemical impedance spectroscopy. The electrochemical behavior of hydrazine oxidation at the electrodes was investigated in 0.1 M pH 7.0 phosphate buffer. Hydrazine oxidation peaks were observed at 650, 399, 280, and −395 mV at the bare glassy carbon, poly(L-serine) modified glassy carbon, gold nanoparticle modified poly(L-serine) film glassy carbon electrode, and platinum nanoparticles modified poly(L-serine) film glassy carbon electrode, respectively. The most active surface towards hydrazine oxidation was the platinum nanoparticle modified poly(L-serine) film glassy carbon electrode with a 1045 mV negative potential shift and approximately three-fold higher peak current. The hydrazine oxidation peak was shifted to a 370 mV negative potential with a 2.5 times higher current at the gold nanoparticle modified poly(L-serine) film glassy carbon electrode compared to the bare electrode. The linear concentration ranges were from 1.0 to 1000 µM and 0.5 to 1000 µM for the gold nanoparticle modified poly(L-serine) film glassy carbon and the platinum nanoparticles modified poly(L-serine) film glassy carbon electrodes with limits of detections of 0.5 and 0.2 µM, respectively.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.