95
Views
8
CrossRef citations to date
0
Altmetric
Preconcentration Techniques

Modeling and Optimization of Lead (II) Adsorption by a Novel Peanut Hull-g-Methyl Methacrylate Biopolymer Using Response Surface Methodology (RSM)

, , , &
Pages 1294-1311 | Received 20 Aug 2019, Accepted 06 Dec 2019, Published online: 18 Dec 2019
 

Abstract

The modeling and optimization of lead (II) adsorption was been characterized on a fabricated peanut hull-g-methyl methacrylate biopolymer. A graft copolymer from agro-based waste was prepared by copolymerizing activated carbon from peanut hulls and methyl methacrylate by the use of benzoyl peroxide as the radical initiator in the presence of an aluminum triflate cocatalyst. A central composite design (CCD) was employed to model batch adsorption experiments and optimize and characterize the influence and interaction of relevant parameters including the pH, contact time, adsorbent dosage, and initial concentration. The optimum conditions for the adsorption process were a pH of 5.7, a contact time of 63.75 min, an adsorbent dosage of 0.2250 g in 50 mL, and initial lead (II) concentration equal to 76.25 mg L−1. Under these conditions, 99.30% of lead (II) was removed from aqueous solution. Isotherm studies demonstrated that the experimental results were in accordance with the Langmuir isotherm model with maximum adsorption capacities of 370.40 and 137.0 mg g−1 in the presence and absence of the cocatalyst, respectively. The experimental results concurred with a pseudo second-order kinetic model that described the adsorption process as chemisorptive. Consequently, the peanut hull-g-methyl methacrylate prepared in the presence of an aluminum triflate cocatalyst has been shown to be potentially effective and sustainable for the remediation of lead (II) from contaminated waters.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.