626
Views
16
CrossRef citations to date
0
Altmetric
Fluorescence

Inorganic Cadmium Detection Using a Fluorescent Whole-Cell Bacterial Bioreporter

&
Pages 2715-2733 | Received 20 Feb 2020, Accepted 11 Apr 2020, Published online: 21 Apr 2020
 

Abstract

Cadmium pollution has become a serious environmental issue due to its toxicity and frequent entrance into environment components such as soil, water, and air via many anthropogenic sources. Over the last two decades, whole-cell bacterial bioreporters have been acknowledged as bio-sentinels for the determination of toxic heavy metals. Herein a sensitive and quite specific bacterial bioreporter was developed to cope with the need for the rapid and simple determination of cadmium. The construction and characterization of a fluorescence-based whole-cell cadmium bioreporter strain, Escherichia coli MG1655 (pBR-PzntA), was described which is based on the expression of green fluorescent protein under the control of the zntA gene promoter of heavy metal resistance determinant. The developed bioreporter was able determine cadmium at 5 µg/L after 3.5 hours of induction in a defined medium while the cadmium detection limit was improved to 2 µg/L after 1.5 hours by the use of an inorganic phosphate-limiting defined medium. Drastic changes in cadmium sensitivity were obtained between bioreporter cells induced at different growth phases. The maximum fluorescence performance was obtained for early exponential growth phase cells. This cadmium bioreporter was found to be more sensitive and specific to cadmium ions than to a wide range of heavy metals and was sensitive to only cadmium at drinking water quality standard concentrations. These findings will lead to future studies including integration of the bioreporter cells into a portable device to assess bioavailable cadmium levels in environmental samples which will provide a rapid and practical field detection technique.

Additional information

Funding

This work was supported by ÖYP-YÖK Research Capacity Development Funds to EE (Budget No. 38.03.00.01/2/09.4.2.20), Scientific and Technical Research Council of Turkey (TÜBİTAK) 2522- TÜBİTAK (Turkey) - NRDIO (Hungary) Joint Funding Program; Project No: 217E115, and by Nanobiz Technology Inc. EE was funded by TUBITAK BIDEB 2211 fellowship.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.