203
Views
18
CrossRef citations to date
0
Altmetric
Electrochemistry

Electrochemical Characterization of the Corrosion of Mild Steel in Saline Following Mechanical Deformation

Pages 1055-1067 | Received 02 May 2020, Accepted 06 Jul 2020, Published online: 20 Jul 2020
 

Abstract

Upgrading the corrosion properties of metallic materials has been the dream of many corrosion experts and material scientists. The present study investigated the influence of mechanical deformation by rolling process on the corrosion behavior of mild steel through an electrochemical process in a chloride-containing environment at room temperature. The microstructures before and after rolling and corrosion tests were analyzed by scanning electron microscopy (SEM). The mild steels were first subjected to cold rolling with approximately 30% rolling reduction, and the corrosion resistance of both the unrolled and rolled samples was then determined. The polarization results revealed that the rolled mild steel sample possessed a corrosion potential of −0.118 V, reduced corrosion current density of 0.133 mA/cm2, higher impedance, and phase angle maximum. The grain refinement and the surface roughness are related to the deformation and corrosion mechanisms.

Disclosure statement

The author declares no conflicts of interest.

Additional information

Funding

T.O. Olugbade acknowledges the support of the research grant council (RGC), Hong Kong Ph.D. Fellowship Scheme (PF16-02783), Hong Kong SAR, China.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.