100
Views
0
CrossRef citations to date
0
Altmetric
Environmental Analysis

Ultra-Trace Electrochemical Determination of Glyphosate Using Bimetallic Metal–Organic Frameworks (MOFs) with Differential Pulse Voltammetry

, , , , , , , , & show all
Pages 2497-2511 | Received 17 Oct 2023, Accepted 17 Dec 2023, Published online: 29 Dec 2023
 

Abstract

Hierarchically bimetallic Zr-Cu metal–organic framework combined with 1,3,5-benzenetricarboxylic acid (Zr-CuBTC MOFs) was synthesized using hydrothermal reaction and used as modifier for investigation of non-electroactive glyphosate. These MOFs were dropcasted on a glassy carbon electrode (GCE) and non-electroactive glyphosate were tested by cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and differential pulse voltammetry (DPV). Glyphosate in water was recognized by the difference of currents in spiked and non-spiked glyphosate samples. At the same time, CuBTC and Fe-CuBTC were investigated for the best material for sensor development. The results showed the bimetallic Zr-CuBTC MOF is the most promising for the determination of glyphosate. Morphological and structural studies showed the coordination of Cu2+ with the presence of Zr4+ ions with BTC ligands provided a highly porous framework with active surface area up to 1337 m2 g−1. The pore diameter and pore volume increased to 1.75 nm and 0.687 cm3 g−1, respectively. Under optimal conditions, Zr-CuBTC modified on GCE (Zr-CuBTC/GCE) sensor is able to indirectly detect glyphosate in a water environment at a detection limit as low as 9 × 10−13 M. The developed sensor was employed to determine glyphosate in the surface water samples collected from the Red River, North Vietnam. The results showed good recoveries (94.6–107.1%) which were in agreement with liquid chromatography coupled tandem mass spectrometry (LC-MS/MS) measurements. These results demonstrate the possibility of using this MOF material in sensor applications to determine trace pesticides in the contaminated water.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Additional information

Funding

This research was funded by the Vietnam Academy of Science and Technology under grant number VAST07.05/23-24 and by the Institute of Chemistry under grant number VHH.2023.12.

Log in via your institution

Log in to Taylor & Francis Online

PDF download + Online access

  • 48 hours access to article PDF & online version
  • Article PDF can be downloaded
  • Article PDF can be printed
USD 61.00 Add to cart

Issue Purchase

  • 30 days online access to complete issue
  • Article PDFs can be downloaded
  • Article PDFs can be printed
USD 768.00 Add to cart

* Local tax will be added as applicable

Related Research

People also read lists articles that other readers of this article have read.

Recommended articles lists articles that we recommend and is powered by our AI driven recommendation engine.

Cited by lists all citing articles based on Crossref citations.
Articles with the Crossref icon will open in a new tab.